Processing of Polycrystalline GSGG for Laser Host Applications
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.
Proposed for publication in Physical Review B. : Proposed for publication in the Journal of Chemical Physics
The first vacuum-ultraviolet spectrum of a polysilylene (chain-type polysilane) with aromatic substituents is presented. Assignments of the absorption bands of the model compound poly(methylphenylsilylene) are based on previous experimental data and theoretical electronic band structure calculations for poly(alkylsilylenes) and on ultraviolet spectra of phenyl-containing monomers and polymers. Although aryl orbitals mix with the {sigma}-conjugated orbitals located along the catenated silicon backbone, some transitions are largely localized on the phenyl groups. These assignments elucidate the nature of the bonding in polysilylenes and should be useful in understanding photodegradation mechanisms and in the design of related new optical materials.
Proposed for publication in Science.
Part 1 of this review deals with the effects of ionizing radiation on glass in the absence of hydrogen and should be consulted for background information not repeated in Part 2. This part includes information on the behavior of hydrogen in glass and how it is affected by experimental variables such as temperature, pressure, and glass composition. The reaction of hydrogen with irradiated glass is treated next, and finally the effects of ionizing radiation on hydrogen-impregnated glass are summarized. 51 refs., 1 tab.
The effects of ionizing radiation (e.g., beams of electrons of {gamma}-radiation) on silica and borosilicate glasses are summarized in this review article. In Part 1, irradiation in the absence of hydrogen is considered. The combined effects of hydrogen and irradiation are treated in Part 2. Descriptions and, if available, mechanisms of changes in the glass properties are discussed. Several experimental variables which may affect the outcome of an irradiation procedure are also outlined. 47 refs.