Publications

3 Results

Search results

Jump to search filters

Examination of Risk Analysis Methods for MOX Land Transport in Japan

Pierce, Jim D.; Hohnstreiter, Glenn F.; Pierce, Jim D.

This report presents background information and methodology for a risk assessment of mixed oxide (MOX) reactor fuel transport in the nation of Japan to support their nuclear energy program. This work includes an extensive literature review, a review of other MOX activities worldwide, a survey of the statutory requirements for transporting nuclear materials, a discussion of risk assessment methodology, and calculation results for specific examples. Typical risk evaluations are given to provide guidance for later risk analyses specific to MOX fuel transport in Japan. This report also includes specific information that will be required for routes, cask types, accident-rate statistics, and population densities along specified routes, along with other detailed information needed for risk analysis studies pertinent to MOX transport in Japan. This information will be used in future specific risk studies.

More Details

Research and Development Program for transportation packagings at Sandia National Laboratories

Hohnstreiter, Glenn F.

This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support.

More Details

Mechanical properties of ferritic and ferritic-pearlitic ductile iron

Hohnstreiter, Glenn F.

A statistical analysis of test results on 1000 transportation and storage casks revealed the main parameters that determine the properties of DI (ductile iron, a special form of cost iron). These data were used to established a test program in which the mechanical properties (particularly fracture toughness) of 24 DI alloys were determined as a function of their microstructure. Furthermore, the analysis emphasized the effect of test specimen size and different test data evaluation methods. Results of the test program show the prominent effect of pearlite content and graphite nodule structure in the mechanical and fracture toughness characteristics of DI. As the first-order parameter, the pearlite content is responsible for the transition from linear-elastic to elastic-plastic material behavior. The structure of the graphite nodules has a strong effect on the magnitude of the material property values. On the lower shelf, materials with small, homogeneously distributed graphite nodules show higher K{sub IC}-values (matrix-oriented fracture). On the upper shelf, materials with larger graphite nodules show higher fracture toughness (graphite-oriented fracture). With smaller specimens, conservative values were calculated on the upper shelf. This is important for transportation and storage containers of radioactive materials.

More Details
3 Results
3 Results