Publications

18 Results

Search results

Jump to search filters

Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

Physics of Plasmas

Olson, Richard E.

The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ~34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

More Details

Comparisons of NIF convergent ablation simulations with radiograph data

Review of Scientific Instruments

Olson, Richard E.; Hicks, D.G.; Meezan, N.B.; Koch, J.A.; Landen, O.L.

A technique for comparing simulation results directly with radiograph data from backlit capsule implosion experiments will be discussed. Forward Abel transforms are applied to the kappa*rho profiles of the simulation. These provide the transmission ratio (optical depth) profiles of the simulation. Gaussian and top hat blurs are applied to the simulated transmission ratio profiles in order to account for the motion blurring and imaging slit resolution of the experimental measurement. Comparisons between the simulated transmission ratios and the radiograph data lineouts are iterated until a reasonable backlighter profile is obtained. This backlighter profile is combined with the blurred, simulated transmission ratios to obtain simulated intensity profiles that can be directly compared with the radiograph data. Examples will be shown from recent convergent ablation (backlit implosion) experiments at the NIF. © 2012 American Institute of Physics.

More Details

Progress in Z-Pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories

Sanford, Thomas W.; Cuneo, M.E.; Leeper, Ramon J.; Matzen, M.K.; Mehlhorn, Thomas A.; Slutz, Stephen A.; Nash, Thomas J.; Stygar, William A.; Olson, Richard E.; Olson, Craig L.; Bliss, David E.; Lemke, Raymond W.; Ruiz, Carlos L.; Bailey, James E.; Chandler, Gordon A.

Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.

More Details

Z facility diagnostic system for high energy density physics at Sandia National Laboratories

Leeper, Ramon J.; Deeney, Christopher D.; Dunham, Gregory S.; Fehl, David L.; Franklin, James K.; Hanson, David L.; Hawn, Rona E.; Hall, Clint A.; Hurst, Michael J.; Jinzo, Tanya D.; Jobe, Daniel O.; Joseph, Nathan R.; Knudson, Marcus D.; Lake, Patrick W.; Lazier, Steven E.; Lucas, J.; McGurn, John S.; Manicke, Matthew P.; Mock, Raymond M.; Moore, T.C.; Nash, Thomas J.; Bailey, James E.; Nelson, Alan J.; Nielsen, D.S.; Olson, Richard E.; Porter, John L.; Pyle, John H.; Rochau, G.A.; Ruggles, Larry R.; Ruiz, Carlos L.; Sanford, Thomas W.; Seamen, Johann J.; Bennett, Guy R.; Simpson, Walter W.; Sinars, Daniel S.; Speas, Christopher S.; Stygar, William A.; Torres, Jose A.; Wenger, D.F.; Carlson, Alan L.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.

Abstract not provided.

Analytic models of high-temperature hohlraums

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Stygar, William A.; Olson, Richard E.; Spielman, Rick B.; Leeper, Ramon J.

A time dependent model for the unified set of high-temperature-hohlraum was presented. The model lead to the definition of laser-conversion-efficiency in terms of the net source power for a laser-driven hohlraum. The capsule coupling efficiency of the baseline National Facility hohlraum was found to be 15-23 % higher than predicted by the analytic expressions. © 2001 by the Infectious Diseases Society of America.

More Details

Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

Physics of Plasmas

Sanford, Thomas W.; Olson, Richard E.; Mock, Raymond M.; Chandler, Gordon A.; Leeper, Ramon J.; Nash, Thomas J.; Ruggles, Larry R.; Simpson, Walter W.; Struve, Kenneth W.

A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.

More Details

Shock Timing and Yield Sensitivity Studies for NIF Ignition Capsules

Olson, Richard E.

A cryogenic, {beta}-layered NIF ignition capsule with a beryllium ablator that employs a BeO dopant (2% O) for opacity control is described. The design has an optimized yield of 12 MJ and uses a ''reduced drive'' hohlraum temperature pulse shape that peaks at {approx}250 eV. Shock timing sensitivity calculations have been performed for this capsule design. Individual uncertainties of (1) {approx}200 ps in the timing of the ''footpulse; (2) {approx}5% in the x-ray flux of the foot pulse and first step; (3) {approx}10% in the ablator EOS; or (4) {approx} 5 {micro}m in the DT ice layer thickness each have a significant impact on thermonuclear yield. Combined uncertainties have greater impact than isolated, individual issues. For example, a combination of uncertainties of: 200 ps in the foot + 2 eV in the foot + 5 pm in the DT thickness results in a calculation that produces only {approx}1% of the original design yield. A second, more speculative, capsule concept utilizing a liquid DT ablator is also discussed. This design produces a 5 MJ yield in a 250 eV peak drive calculation.

More Details

The light ion LMF and its relevance to IFE

Olson, Richard E.

The inertial confinement fusion (ICF) program at Sandia National Laboratories (SNL) is directed toward validating light ions as an efficient driver for ICF defense and energy applications. The light ion laboratory microfusion facility (LMF) is envisioned as a facility in which high gain ICF targets could be developed and utilized in defense-related experiments. The relevance of LMF technology to eventual inertial fusion energy (IFE) applications is assessed via a comparison of LMF technologies with those projected in the Light Ion Beam Reactor Assessment (LIBRA) conceptual reactor design study.

More Details

Computational Simulations of a Soft X-Ray Projection Lithography Laser Plasma Source

Optics InfoBase Conference Papers

Olson, Richard E.

A Sandia National Laboratories/AT&T Bell Laboratories Team is developing a soft x-ray projection lithography tool that uses a compact laser plasma as a source of 14 nm x-rays. Optimization of the 14 nm x-rays source brightness is a key issue in this research. This paper describes our understanding of the source as it has been obtained through the use of computer simulations utilizing the LASNEX radiation-hydrodynamics code.

More Details
18 Results
18 Results