Publications

6 Results

Search results

Jump to search filters

Z facility diagnostic system for high energy density physics at Sandia National Laboratories

Leeper, Ramon J.; Deeney, Christopher D.; Dunham, Gregory S.; Fehl, David L.; Franklin, James K.; Hanson, David L.; Hawn, Rona E.; Hall, Clint A.; Hurst, Michael J.; Jinzo, Tanya D.; Jobe, Daniel O.; Joseph, Nathan R.; Knudson, Marcus D.; Lake, Patrick W.; Lazier, Steven E.; Lucas, J.; McGurn, John S.; Manicke, Matthew P.; Mock, Raymond M.; Moore, T.C.; Nash, Thomas J.; Bailey, James E.; Nelson, Alan J.; Nielsen, D.S.; Olson, Richard E.; Porter, John L.; Pyle, John H.; Rochau, G.A.; Ruggles, Larry R.; Ruiz, Carlos L.; Sanford, Thomas W.; Seamen, Johann J.; Bennett, Guy R.; Simpson, Walter W.; Sinars, Daniel S.; Speas, Christopher S.; Stygar, William A.; Torres, Jose A.; Wenger, D.F.; Carlson, Alan L.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.

Abstract not provided.

Crystal spectroscopy of silicon aero-gel end-caps driven by a dynamic hohlraum on Z

Proposed for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer.

Nash, Thomas J.; McGurn, John S.; Schroen, D.G.; Russell, Christopher O.; Lake, Patrick W.; Jobe, Daniel O.; Gilliland, Terrance L.; Nielsen, D.S.; Lucas, J.; Moore, T.C.; Torres, Jose A.; Macfarlane, Joseph J.; Chrien, Robert E.; Idzorek, G.; Watt, Robert G.; Leeper, Ramon J.; Sanford, Thomas W.; Mock, Raymond M.; Chandler, Gordon A.; Bailey, James E.; Mckenney, John M.; Mehlhorn, Thomas A.; Seamen, Johann F.

We present results from crystal spectroscopic analysis of silicon aero-gel foams heated by dynamic hohlraums on Z. The dynamic hohlraum on Z creates a radiation source with a 230-eV average temperature over a 2.4-mm diameter. In these experiments silicon aero-gel foams with 10-mg/cm{sup 3} densities and 1.7-mm lengths were placed on both ends of the dynamic hohlraum. Several crystal spectrometers were placed both above and below the z-pinch to diagnose the temperature of the silicon aero-gel foam using the K-shell lines of silicon. The crystal spectrometers were (1) temporally integrated and spatially resolved, (2) temporally resolved and spatially integrated, and (3) both temporally and spatially resolved. The results indicate that the dynamic hohlraum heats the silicon aero-gel to approximately 150-eV at peak power. As the dynamic hohlraum source cools after peak power the silicon aero-gel continues to heat and jets axially at an average velocity of approximately 50-cm/{micro}s. The spectroscopy has also shown that the reason for the up/down asymmetry in radiated power on Z is that tungsten enters the line-of-sight on the bottom of the machine much more than on the top.

More Details

Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

Physics of Plasmas

Sanford, Thomas W.; Olson, Richard E.; Mock, Raymond M.; Chandler, Gordon A.; Leeper, Ramon J.; Nash, Thomas J.; Ruggles, Larry R.; Simpson, Walter W.; Struve, Kenneth W.

A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.

More Details
6 Results
6 Results