Publications

Results 7701–7800 of 99,299

Search results

Jump to search filters

Evaluation of Joint Cyber/Safety Risk in Nuclear Power Systems

Clark, Andrew; James, Jacob; Mohmand, Jamal A.; Lamb, Christopher; Maccarone, Lee; Rowland, Mike

This report presents an analysis of the Emergency Core Cooling System (ECCS) for a generic Boiling Water Reactor (BWR)-4 NPP. The Electric Power Research Institute (EPRI) developed Hazards and Consequences Analysis for Digital Systems (HAZCADS) process is applied to the ECCS and its subsystems to identify unsafe control actions (UCAs) which act as possible cyber events of concern. The analysis is performed for two design basis events: Small-break Loss of Coolant Accident (SLOCA) and general transients (TRANS), such as unintended reactor trip. In previous work, HAZCADS UCAs were combined with other cyber-attack analysis to develop a risk-informed approach; however, this was for a single system. This report explores advanced systems engineering modeling approaches to model the interactions between digital assets across multiple systems which may be targeted by cyber adversaries. The complex and interdependent design of digital systems has the potential to introduce emergent cyber properties that are generally not covered by hazard analyses nor formal nuclear Probabilistic Risk Assessment (PRA). The R&D and supporting analysis presented here explores approaches to predict and manage how interdependent system properties effect risk. To show the potential impact of a successful cyber-attack to formal PRA event tree probabilities, HAZCADS analysis was also used. HAZCADS was also used to model the automatic depressurization system (ADS) automatic actuation. This analysis extended to an integrated system analysis for common-cause failure (CCF). In this aspect, the HAZCADS analysis continued by analyzing plant design details for system connectivity in support of critical plant functions. A dependency matrix was developed to depict the integrated functionality of the interconnected systems. Areas of potential CCF are indicated. Future work could include adversary attack development to show how CCF could be caused, resulting in PRA events. Across the multiple systems that comprise the ECCS, the analysis shows that the change in such probabilities was very different between systems. This indicates that some systems have a larger potential risk impact from successful cyber-attack or digital failure, which indicates a need for these systems to have a higher priority for design and defensive measures. Furthermore, we were able to establish that a risk analysis using any arbitrary threat model establishes an ordering of components with regard to cyber-risk. This ordering can be used to influence the overall system design with an eye to lowering risk, or as a way to understand real-time risk to operational systems based on a current threat landscape. Expert knowledge of both the analysis process and the system being analyzed is required to perform a HAZCADS analysis. The need for a tiered risk analysis is demonstrated by the results of this report.

More Details

Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling

Advanced Energy Materials

Hawkins, Brendan E.; Turney, Damon E.; Messinger, Robert J.; Kiss, Andrew M.; Yadav, Gautam G.; Banerjee, Sanjoy; Lambert, Timothy N.

Zinc oxide is of great interest for advanced energy devices because of its low cost, wide direct bandgap, non-toxicity, and facile electrochemistry. In zinc alkaline batteries, ZnO plays a critical role in electrode passivation, a process that hinders commercialization and remains poorly understood. Here, novel observations of an electroactive type of ZnO formed in Zn-metal alkaline electrodes are disclosed. The electrical conductivity of battery-formed ZnO is measured and found to vary by factors of up to 104, which provides a first-principles-based understanding of Zn passivation in industrial alkaline batteries. Simultaneous with this conductivity change, protons are inserted into the crystal structure and electrons are inserted into the conduction band in quantities up to ≈1020 cm−3 and ≈1 mAh gZnO−1. Electron insertion causes blue electrochromic coloration with efficiencies and rates competitive with leading electrochromic materials. The electroactivity of ZnO is evidently enabled by rapid crystal growth, which forms defects that complex with inserted cations, charge-balanced by the increase of conduction band electrons. This property distinguishes electroactive ZnO from inactive classical ZnO. Knowledge of this phenomenon is applied to improve cycling performance of industrial-design electrodes at 50% zinc utilization and the authors propose other uses for ZnO such as electrochromic devices.

More Details

What is Water's Role in a Carbon Neutral Future? A Summary of Findings from a Webinar Series

Gunda, Thushara; Ferencz, Stephen; Hora, Priya I.; Kuzio, Stephanie; Foulk, James W.

There has been ever-growing interest and engagement regarding net-zero and carbon neutrality goals, with many nations committing to steep emissions reductions by mid-century. Although water plays critical roles in various sectors, there has been a distinct gap in discussions to date about the role of water in the transition to a carbon neutral future. To address this need, a webinar was convened in April 2022 to gain insights into how water can support or influence active strategies for addressing emissions activities across energy, industrial, and carbon sectors. The webinar presentations and discussions highlighted various nuances of direct and indirect water use both within and across technology sectors (Figure ES-1). For example, hydrogen and concrete production, water for mining, and inland waterways transportation are all heavily influenced by the energy sources used (fossil fuels vs. renewable sources) as well as local resource availabilities. Algal biomass, on the other hand, can be produced across diverse geographies (terrestrial to sea) in a range of source water qualities, including wastewater and could also support pollution remediation through nutrient and metals recovery. Finally, water also influences carbon dynamics and cycling within natural systems across terrestrial, aquatic, and geologic systems. These dynamics underscore not only the critical role of water within the energy-water nexus, but also the extension into the energy-watercarbon nexus.

More Details

Tomographic imaging of atmospheric pressure plasma on complex surfaces

Bentz, Brian Z.

Many plasma types and behaviors such as streamer, arcs, cathode spots, anode spots, ionization waves, and magnetic field interactions create non-symmetric, fully 3D plasma structures. The plasma distribution in 3D space is heavily influenced by complex surfaces and the coupling interactions between plasma properties and the interfacing material properties. For example, ionization waves propagate in directions where ionization rates are highest, leading to complex configurations that are not fully understood or well characterized. Recent advances in laser diagnostics and models have been able to investigate well-controlled idealized plasmas in 2D fashion, but the complex structure in actual plasmas requires a technique than can provide a more complete 3D picture. However, 3D plasma diagnostics do not currently exist. To address this limitation, this activity will leverage available equipment to build a new tomographic optical imaging capability and advance the state-of-the-art in plasma diagnostics to investigate 3D phenomena on complex surfaces.

More Details

Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome

Cell

Patel, Jaymin R.; Oh, Joonseok; Crawford, Jason M.; Isaacs, Farren J.

Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, in this work, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites—tyrocitabines—from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of “Amadori synthases” and “abortive” tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.

More Details

Topographically Scattered Infrasound Waves Observed on Microbarometer Arrays in the Lower Stratosphere

Earth and Space Science

Bird, E.J.; Lees, J.M.; Bowman, Daniel

When an acoustic wave strikes a topographic feature, some of its energy is scattered. Sensors on the ground cannot capture these scattered signals when they propagate at high angles. We report observations of upwardly-scattered acoustic waves prior to refraction back to the ground, intercepting them with a set of balloon-borne infrasound microbarometers in the lower stratosphere over northern Sweden. We show that these scattered waves generate a coda whose presence can be related to topography beneath balloons and low-altitude acoustic ducts. The inclination of the coda signals changes systematically with time, as expected from waves arriving from scatterers successively closer to receivers. The codas are present when a temperature inversion channels infrasound from a set of ground chemical explosions along the ground, but are absent following the inversion's dissipation. Since scattering partitions energy away from the main arrival, these observations imply a mechanism of amplitude loss that had previously been inaccessible to measurement. As such, these data and results allow for a better comprehension of interactions between atmospheric infrasound propagation and the solid earth.

More Details

Self-Induced Curvature in an Internally Loaded Peridynamic Fiber

Silling, Stewart

A straight fiber with nonlocal forces that are independent of bond strain is considered. These internal loads can either stabilize or destabilize the straight configuration. Transverse waves with long wavelength have unstable dispersion properties for certain combinations of nonlocal kernels and internal loads. When these unstable waves occur, deformation of the straight fiber into a circular arc can lower its potential energy in equilibrium. The equilibrium value of the radius of curvature is computed explicitly.

More Details

Remote Monitoring Systems/Remote Data Transmission for International Nuclear Safeguards

Smartt, Heidi A.

The use of remotely transmitted data from a nuclear facility under international nuclear safeguards to an inspectorate headquarters has been rapidly growing since inception as its value in reducing inspection effort and cost is demonstrated. There are opportunities for further growth moving forward including (1) the number of spent fuel casks in dry interim storage are increasing, leading to strain on inspection resources and potentially increased radiation exposure to inspectors, (2) the frequency of encapsulating spent nuclear fuel for final disposal in geological repositories occurs at a rate that may lead to the need for on-site inspectors unless systems can be developed to remotely transmit data, and (3) new facility types such as small modular reactors may rely heavily on remotely transmitted data due in part to remote locations of operation and mobility. Challenges need to be addressed too and include (1) hesitancy to implement remote data transmission by states, (2) data collection, transmission, security, and analysis, and (3) reliable power and communications. This report examines the evolution, equipment deployed, status, and opportunities/challenges of remote data transmission moving forward.

More Details

Health Management Clinic Report FY18

Grassham, Johanna

The Health Management Clinic (HMC) is a worksite specialty clinic designed to provide an exceptional level of health care for Sandia employees with diabetes, cholesterol and blood pressure disorders, and for those employees that need help with smoking cessation, depression, anxiety, sleep disorders, or weight management. With a unified commitment to the best care practices available, the HMC is Sandia’s interface to workplace healthcare and health plan services. The HMC provides Sandia employees access to onsite screenings, health care exams, preventative health education, disease management education, care management, periodic laboratory testing, immunizations, podiatry services, and behavioral, fitness, and nutrition counseling/education. Our multidisciplinary team of health professionals consists of physicians, nurses, medical assistants, certified diabetes educators, dietitians, health educators, and exercise specialists. Services offered by the Health Management clinic have been designed to reduce further complications from disease states and promote healthy behavior changes for Sandia employees.

More Details
Results 7701–7800 of 99,299
Results 7701–7800 of 99,299