Free-floating balloons are an emerging platform for infrasound recording, but they cannot host arrays sufficiently wide for multi-sensor acoustic direction finding techniques. Because infrasound waves are longitudinal, the balloon motion in response to acoustic loading can be used to determine the signal azimuth. This technique, called “aeroseismometry,” permits sparse balloon-borne networks to geolocate acoustic sources. This is demonstrated by using an aeroseismometer on a stratospheric balloon to measure the direction of arrival of acoustic waves from successive ground chemical explosions. A geolocation algorithm adapted from hydroacoustics is then used to calculate the location of the explosions.
The radiation effects community needs clear, well-documented, neutron energy-dependent responses that can be used in assessing radiation-induced material damage to GaAs semiconductors and for correlating observed radiation-induced changes in the GaAs electronic properties with computed damage metrics. In support of the objective, this document provides: a) a clearly defined set of relevant neutron response functions for use in dosimetry applications; b) clear mathematical expressions for the defined response functions; and c) updated quantitative values for the energy- dependent response functions that reflect the best current nuclear data and modelling. This document recaps the legacy response functions. It then surveys the latest nuclear data and updates the recommended response function to support current GaAs damage studies. A detailed tabulation for six of the energy-dependent response functions is provided in an Appendix.
A proof-of-concept tool, the Produced Water-Economic, Socio, Environmental Simulation model (PW-ESESim), was developed to support ease of analysis. The tool was designed to facilitate head-to-head comparison of alternative produced water source, treatment, and reuse water management strategies. A graphical user interface (GUI) guides the user through the selection and design of alternative produced water treatment and reuse strategies and the associated health and safety risk and economic benefits. At the highest conceptual level, alternative water strategies include the selection of a source water (locally or regionally available produced water), treatment strategy (pre-treatment, physical, chemical, biological, desalination, and post-treatment processes) and product water purpose (e.g., irrigation, industrial processing, environmental). After selection of these details, the PW-ESESim output a number of key economic, societal, environmental, public/ecological health and safety metrics to support user decision-making; specific examples include, cost of treatment, improvements in freshwater availability, human and ecologic health impacts and growth in local jobs and the economy. Through the simulation of different produced water treatment and management strategies, tradeoffs are identified and used to inform fit-for-purpose produced water treatment and reuse management decisions. While the tool was initially designed using Southeastern New Mexico (Permian Basin) as a case study, the general design of the PW-ESESim model can be extended to support other oil and gas regions of the U.S.
We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to a stakeholder's risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.
Entangling gates in trapped-ion quantum computers are most often applied to stationary ions with initial motional distributions that are thermal and close to the ground state, while those demonstrations that involve transport generally use sympathetic cooling to reinitialize the motional state prior to applying a gate. Future systems with more ions, however, will face greater nonthermal excitation due to increased amounts of ion transport and exacerbated by longer operational times and variations over the trap array. In addition, pregate sympathetic cooling may be limited due to time costs and laser access constraints. In this paper, we analyze the impact of such coherent motional excitation on entangling-gate error by performing simulations of Mølmer-Sørenson (MS) gates on a pair of trapped-ion qubits with both thermal and coherent excitation present in a shared motional mode at the start of the gate. We quantify how a small amount of coherent displacement erodes gate performance in the presence of experimental noise, and we demonstrate that adjusting the relative phase between the initial coherent displacement and the displacement induced by the gate or using Walsh modulation can suppress this error. We then use experimental data from transported ions to analyze the impact of coherent displacement on MS-gate error under realistic conditions.
Abstract: An innovative biomimetic method has been developed to synthesize layered nanocomposite coatings using silica and sugar-derived carbon to mimic the formation of a natural seashell structure. The layered nanocomposites are fabricated through alternate coatings of condensed silica and sugar. Sugar-derived carbon is a cost-effective material as well as environmentally friendly. Pyrolysis of sugar will form polycyclic aromatic carbon sheets, i.e., carbon black. The resulting final nanocomposite coatings can survive temperatures of more than 1150 °C and potentially up to 1650 °C. These coatings have strong mechanical properties, with hardness of more than 11 GPa and elastic modulus of 120 GPa, which are 80% greater than those of pure silica. The layered coatings have many applications, such as shielding in the form of mechanical barriers, body armor, and space debris shields. Graphical abstract: [Figure not available: see fulltext.]
The integrity of wellbores at the interbed between the caprock and salt is a serious concern in the Big Hill site. For the remediation and life extension of wellbores, more accurate predictions from the global model are needed. The Big Hill global model is improved using the M-D viscoplastic contact surface model and the mesh containing the interbed layer with contact surfaces between the salt and caprock layers, and fault blocks in overburden and caprock layers. The model calibration has been performed based on the cavern volumetric closures obtained from the Caveman calculations. The results agree well from 1991 to the early 2000s. The difference starts to widen after that, it might be because of frequent fluid movement and raw water injection. Therefore, the predictions from this improved model could be used to examine the structural integrity of caverns in Big Hill salt dome.
Sandia National Laboratories (SNL) is a multimission laboratory located in Albuquerque, New Mexico, and is one of three National Nuclear Security Administration research and development laboratories located in the United States. Recently, SNL’s Emergency Response Team (ERT) responded to an incident involving a sulfur dioxide (SO2)-fixed monitor, setting off the alarm inside a laboratory and in the adjacent hallway. The potential sources for the alarm were various experiments involving batteries and an uninterrupted power supply (UPS) in the immediate area.
Sandia National Laboratories (SNL) is performing a test campaign for the Department of Energy (DOE) Office of Cybersecurity, Energy Security, and Emergency Response (CESER) to address high-altitude electromagnetic pulse (HEMP) vulnerability of critical components of generation stations, with focus on early-time (E1) HEMP. The campaign seeks to establish response and damage thresholds for these critical elements in response to reasonable HEMP threat levels as a means for determining where vulnerabilities may exist or where mitigations may be needed. This report provides component vulnerability test results that will help to inform site vulnerability assessments and HEMP mitigation planning.
Many experiments at Sandia’s Z Pulsed Power Facility require x-ray backlighting diagnostics to understand experiment performance. Due to limitations in present-day source/detection modalities, most x-ray diagnostics at Z are restricted to photon energies <20 keV, ultimately limiting the density, amount, and atomic number of targets diagnosable in experiments. These limitations force the use of low-Z materials like Beryllium, and they prevent acquisition of important backlighting data for materials/densities that are opaque to soft x-rays and where background emission from the Z load and transmission lines overwhelm diagnostics. In this LDRD project, we have investigated the design and development of a laser wakefield acceleration platform driven by the Z-Petawatt laser – a platform that would enable the generation of a pulsed, collimated beam of high energy x-rays up to 100 keV. Geometrical considerations for implementation on the Z Machine require the use of sacrificial mirrors, which have been tested in offline experiments in the Chama target chamber in building 983. Our results suggest the use of sacrificial mirrors would not necessarily inhibit the laser wakefield x-ray process, particularly with the benefits stemming from planned laser upgrades. These conclusions support the continuation of laser wakefield source research and the development of the necessary infrastructure to deliver the Z-Petawatt laser to the Z center section along the appropriate lines of sight. Ultimately, this new capability will provide unprecedented views through dense states of matter, enabling the use of previously incompatible target materials/designs, and uncovering a new set of observables accessible through diffraction and spectroscopy in the hard x-ray regime. These will amplify the data return on precious Z shots and enhance Sandia’s ability to investigate fundamental physics in support of national security.
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.
The use of an electrochemical dissolution process is shown to remove the recast layer contamination from the surfaces of electrical-discharge-machining cut components, as well as the interior exposed surfaces of the structure. The solution chemistry, cell potential, and exposure time are all relevant interdependent variables. Optimization of the electrode geometry should be made for each type of component. For the case of Cu-Zn recast contamination of 300-series alloy components, surface composition analysis indicates that complete electrochemical dissolution is achieved using a dilute solution of nitric acid (HNO3). For example, electrochemical dissolution of the Cu-Zn recast is accomplished at 1.2 V cell potential using a 20% nitric solution and an exposure time of 4 h. The use of a nitric acid bath was specifically chosen since it’s chemically compatible and will not degrade the host alloy or the component. In sum, an electrochemically driven dissolution process can be tailored to remove of the recast contamination without affecting the integrity of the host component structure and its dimensional tolerances.
The capability of a 1-D PFLOTRAN model to simulate the S1-3 bentonite saturation experiment has been demonstrated and validated against experimental data. Work remains to be done to refine 1-D PFLOTRAN simulations of the experiment S1-4 which include evaluation of parameter sensitivities on the prediction of material saturation and relative permeabilities. This and further testing of PFLOTRAN capabilities will be done as part of DECOVALEX 2023 Task D contributions by the SNL team in the coming months.
Thermal spray processing of metals and respective blends is becoming increasingly attractive due to the unique properties such as increased yield strength, low ductility, and differences in tensile and compressive strengths that result from microstructural features due to the spray process compared to other additive manufacturing methods. Here we report the results of plate impact experiments applied to Controlled Atmosphere Plasma Spray deposits of tantalum (Ta), niobium (Nb), and a tantalum-niobium blend (TaNb). These methods allowed for definition of the Hugoniot for each material type and the assessment of the Hugoniot Elastic Limit (HEL). Spallation experiments were conducted, and soft recovery of each material type allowed for scanning electron microscopy to characterize the fracture mechanism during tensile loading.