Publications

5 Results

Search results

Jump to search filters

Early-Time Electromagnetic Pulse Response Validation of Surge Arrester Models

2023 IEEE Symposium on Electromagnetic Compatibility and Signal/Power Integrity, EMC+SIPI 2023

Bowman, Tyler B.; Kmieciak, Thomas G.; Biedermann, Laura B.

High-altitude electromagnetic pulse events are a growing concern for electric power grid vulnerability assessments and mitigation planning, and accurate modeling of surge arrester mitigations installed on the grid is necessary to predict pulse effects on existing equipment and to plan future mitigation. While some models of surge arresters at high frequency have been proposed, experimental backing for any given model has not been shown. This work examines a ZnO lightning surge arrester modeling approach previously developed for accurate prediction of nanosecond-scale pulse response. Four ZnO metal-oxide varistor pucks with different sizes and voltage ratings were tested for voltage and current response on a conducted electromagnetic pulse testbed. The measured clamping response was compared to SPICE circuit models to compare the electromagnetic pulse response and validate model accuracy. Results showed good agreement between simulation results and the experimental measurements, after accounting for stray testbed inductance between 100 and 250 nH.

More Details

The effect of metal-insulator interface interactions on electrical transport in granular metals

Journal of Physics Condensed Matter

Gilbert, Simeon J.; Rosenberg, Samantha G.; Kotula, Paul G.; Kmieciak, Thomas G.; Biedermann, Laura B.; Siegal, Michael P.

We present an in-depth study of metal-insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2-0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7-2.6 nm average diameters and percolation thresholds between φ = 0.4-0.5. The room temperature conductivities for the φ = 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal-insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal-insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.

More Details
5 Results
5 Results