Publications

14 Results

Search results

Jump to search filters

Electrical-Discharge-Machining Contamination Removal from Metal Additively Manufactured Components

Banga, Dhego O.; Chames, Jeffery M.; Yee, Joshua K.; Jankowski, Alan F.

The use of an electrochemical dissolution process is shown to remove the recast layer contamination from the surfaces of electrical-discharge-machining cut components, as well as the interior exposed surfaces of the structure. The solution chemistry, cell potential, and exposure time are all relevant interdependent variables. Optimization of the electrode geometry should be made for each type of component. For the case of Cu-Zn recast contamination of 300-series alloy components, surface composition analysis indicates that complete electrochemical dissolution is achieved using a dilute solution of nitric acid (HNO3). For example, electrochemical dissolution of the Cu-Zn recast is accomplished at 1.2 V cell potential using a 20% nitric solution and an exposure time of 4 h. The use of a nitric acid bath was specifically chosen since it’s chemically compatible and will not degrade the host alloy or the component. In sum, an electrochemically driven dissolution process can be tailored to remove of the recast contamination without affecting the integrity of the host component structure and its dimensional tolerances.

More Details

Comparison of Orientation Mapping in SEM and TEM

Microscopy and Microanalysis

Sugar, Joshua D.; Mckeown, Joseph T.; Banga, Dhego O.; Michael, Joseph R.

Multiple experimental configurations for performing nanoscale orientation mapping are compared to determine their fidelity to the true microstructure of a sample. Transmission Kikuchi diffraction (TKD) experiments in a scanning electron microscope (SEM) and nanobeam diffraction (NBD) experiments in a transmission electron microscope (TEM) were performed on thin electrodeposited hard Au films with two different microstructures. The Au samples either had a grain size that is >50 or <20 nm. The same regions of the samples were measured with TKD apparatuses at 30 kV in an SEM with detectors in the horizontal and vertical configurations and in the TEM at 300 kV. Under the proper conditions, we demonstrate that all three configurations can produce data of equivalent quality. Each method has strengths and challenges associated with its application and representation of the true microstructure. The conditions needed to obtain high-quality data for each acquisition method and the challenges associated with each are discussed.

More Details
14 Results
14 Results