Publications

Results 15101–15200 of 99,299

Search results

Jump to search filters

On the fatigue crack growth behavior of Ti–10V–2Fe–3Al in gaseous hydrogen

International Journal of Hydrogen Energy

Harris, Zachary D.; Ronevich, Joseph; Stavila, Vitalie; Somerday, Brian P.

The fatigue crack growth behavior of Ti–10V–2Fe–3Al in gaseous hydrogen (H2) was assessed through comparative experiments conducted in laboratory air and 8.3 MPa H2. The measured fatigue crack growth rate (da/dN) versus applied stress intensity factor range (ΔK) relationships and observed fracture morphologies for laboratory air and H2 were comparable up to ΔK ≈ 6.9 MPa√m, when tested at a load ratio of 0.1 and frequency of 10 Hz. At higher ΔK values, significant crack deflection and subsequent catastrophic failure occurred in the specimen tested in H2. This degradation was not observed in a specimen pre-exposed to 8.3 MPa H2 for 96 h and then immediately tested in laboratory air. X-ray diffraction of the failed H2-tested specimen revealed that the material remnants were predominantly composed of TiH2, suggesting that hydride formation was the catalyst for catastrophic failure in H2. The mechanistic implications of these results and their impact on current material compatibility assessments for Ti alloys in hydrogen service are then discussed.

More Details

Thermodynamic properties of metaschoepite predicted from density functional perturbation theory

Chemical Physics Letters

Weck, Philippe F.; Jove-Colon, Carlos F.; Kim, Eunja

Density functional perturbation theory (DFPT) calculations of the thermodynamic properties of metaschoepite, (UO2)8O2(OH)12·10H2O, are reported. Using a recently revised crystal structure of metaschoepite, the predicted molar entropy and isobaric heat capacity are overall significantly smaller than previous calculations using an earlier orthorhombic crystal structure model. The present DFPT calculations also show large differences between the thermodynamic functions of metaschoepite and schoepite, which might reflect the change in phonon properties upon removal of two H2O molecules per formula unit and alteration of the H-bonded interlayer water network from schoepite to metaschoepite.

More Details

Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting

Cryosphere

Zhang, Tong; Price, Stephen F.; Hoffman, Matthew J.; Perego, Mauro; Asay-Davis, Xylar

Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding-line flux due to localized ice thickness perturbations, a proxy for localized changes in sub-ice-shelf melting. From our experiments, applied to idealized (MISMIPC) and realistic (Larsen C) ice shelf domains, we identify a correlation between a locally derived buttressing number on the ice shelf, based on the first principal stress, and changes in the integrated grounding-line flux. The origin of this correlation, however, remains elusive from the perspective of a theoretical or physically based understanding. This and the fact that the correlation is generally much poorer when applied to realistic ice shelf domains motivate us to seek an alternative approach for predicting changes in grounding-line flux.We therefore propose an adjoint-based method for calculating the sensitivity of the integrated grounding-line flux to local changes in ice shelf geometry. We show that the adjoint-based sensitivity is identical to that deduced from pointwise, diagnostic model perturbation experiments. Based on its much wider applicability and the significant computational savings, we propose that the adjoint-based method is ideally suited for assessing grounding-line flux sensitivity to changes in sub-ice-shelf melting.

More Details

Testing a novel peptide drug towards a goal of reducing mortality in critically ill COVID19 patients

Celebi, Aleyna; Celebi, Nisa; Hirakawa, Matthew

COVID 19 has been devastating the globe over the past year, and although our knowledge of how the disease progresses is constantly evolving, there is a significant amount we now about the mechanisms underlying COVID19. There is growing evidence that a 'cytokine storm' is a significant driver of mortality associated with COVID19, with studies showing high levels of hallmark inflammatory indicators in critically ill COVID19 patients. This essentially consists of the patient's immune system going awry and causing white blood cells to constantly release a large number of small molecules called cytokines. The result of this is further activation of the immune system, which ends up attacking not only infected but also healthy patient tissues, resulting in organ failure.

More Details

Biodiesel Ethers: Fatty Acid-Derived Alkyl Ether Fuels as Improved Bioblendstocks for Mixing-Controlled Compression Ignition Engines

Energy and Fuels

Carlson, Joseph; Davis, Ryan; Monroe, Eric; George, Anthe G.; Shinde, Somnath D.

In the last 20 years, biodiesel consumption in the United States has rapidly increased to ∼2 billion gallons per year as a renewable supplement to fossil fuel. However, further expansion of biodiesel use is currently limited in part by poor cold weather performance, which prevents year-round blending and necessitates blend walls ≤5% v/v. In order to provide a diesel fuel blendstock with improved cold weather performance (cloud point, pour point, and cold filter plug point), while at the same time maintaining other required fuel performance specifications, several biodiesel redox analogues were synthesized and tested. The best performing candidate fuels from this class showed improvement in the derived cetane number (29.3% shorter ignition delay), lower heating value (+4.7 MJ/kg), relative sooting tendency (-7.4 YSI/MJ), and cloud point (15 °C lower) when compared to a B100 biodiesel composed of an identical fatty acid profile. It was observed as a general trend that the reduced form of biodiesel, fatty alkyl ethers (FAEs), shows performance improvements in all fuel property metrics. The suite of improved properties provided by FAEs gives biodiesel producers the opportunity to diversify their portfolio of products derived from lipid and alcohol feedstocks to include long-chain alkyl ethers, a biodiesel alternative with particular applicability for winter weather conditions across the US.

More Details

Dissolvable Template Nanoimprint Lithography: A Facile and Versatile Nanoscale Replication Technique

Nano Letters

Oh, Junho; Hoffman, Jacob B.; Hong, Sungmin; Jo, Kyoo D.; Kustas, Jessica; Reed, Julian H.; Dana, Catherine E.; Cropek, Donald M.; Alleyne, Marianne

Nanoimprinting lithography (NIL) is a next-generation nanofabrication method, capable of replicating nanostructures from original master surfaces. Here, we develop highly scalable, simple, and nondestructive NIL using a dissolvable template. Termed dissolvable template nanoimprinting lithography (DT-NIL), our method utilizes an economic thermoplastic resin to fabricate nanoimprinting templates, which can be easily dissolved in simple organic solvents. We used the DT-NIL method to replicate cicada wings which have surface nanofeatures of ∼100 nm in height. The master, template, and replica surfaces showed a >∼94% similarity based on the measured diameter and height of the nanofeatures. The versatility of DT-NIL was also demonstrated with the replication of re-entrant, multiscale, and hierarchical features on fly wings, as well as hard silicon wafer-based artificial nanostructures. The DT-NIL method can be performed under ambient conditions with inexpensive materials and equipment. Our work opens the door to opportunities for economical and high-throughput nanofabrication processes.

More Details

Frequency Conversion in a Time-Variant Dielectric Metasurface

Nano Letters

Karl, Nicholas J.; Vabishchevich, Polina P.; Shcherbakov, Maxim R.; Liu, Sheng; Sinclair, Michael B.; Shvets, Gennady; Brener, Igal

The color of light is a fundamental property of electromagnetic radiation; as such, control of the frequency is a cornerstone of modern optics. Nonlinear materials are typically used to generate new frequencies, however the use of time-variant systems provides an alternative approach. Utilizing a metasurface that supports a high-quality factor resonance, we demonstrate that a rapidly shifting refractive index will induce frequency conversion of light that is confined in the nanoresonator meta-atoms. We experimentally observe this frequency conversion and develop a time-dependent coupled mode theory model that well describes the system. The intersection of high quality-factor resonances, active materials, and ultrafast transient spectroscopy leads to the demonstration of metasurfaces operating in a time-variant regime that enables enhanced control over light-matter interaction.

More Details

The Complicated Link between Material Properties and Microfracture Density for an Underground Explosion in Granite

Journal of Geophysical Research. Solid Earth

Broome, Scott T.; Swanson, Erika; Sussman, Aviva J.

More Details

Impact Response of Cold Spray Deposited Materials

Branch, Brittany A.; Mccoy, Chad A.; Vackel, Andrew

Solid-state cold spraying (CS) of metals and respective blends is becoming increasingly attractive compared to conventional high temperature processes due to the unique properties such as increased yield strength, low ductility, and differences in tensile and compressive strengths that result from microstructural features due to the CS process. Here we report the results of plate impact experiments applied to CS deposits of tantalum (Ta), niobium (Nb), and a tantalum- niobium blend (TaNb). These methods allowed for definition of the Hugoniot for each material type and allowed for assessment of the Hugoniot Elastic Limit (HEL). Scanning electron microscopy was used on recovered samples to characterize the fracture mechanism during spallation.

More Details

Accelerating Finite-temperature Kohn-Sham Density Functional Theory\ with Deep Neural Networks

Ellis, John A.; Cangi, Attila; Modine, Normand A.; Stephens, John A.; Thompson, A.P.; Rajamanickam, Sivasankaran

We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially-resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.

More Details

A Survey of Constrained Gaussian Process: Approaches and Implementation Challenges

Journal of Machine Learning for Modeling and Computing

Swiler, Laura P.; Gulian, Mamikon; Frankel, A.; Safta, Cosmin; Jakeman, John D.

Gaussian process regression is a popular Bayesian framework for surrogate modeling of expensive data sources. As part of a larger effort in scientific machine learning, many recent works have incorporated physical constraints or other a priori information within Gaussian process regression to supplement limited data and regularize the behavior of the model. We provide an overview and survey of several classes of Gaussian process constraints, including positivity or bound constraints, monotonicity and convexity constraints, differential equation constraints provided by linear PDEs, and boundary condition constraints. We compare the strategies behind each approach as well as the differences in implementation, concluding with a discussion of the computational challenges introduced by constraints.

More Details

Redox-active oxide materials for thermal energy storage

Babiniec, Sean M.; Ambrosini, Andrea A.; Coker, Eric N.; Miller, James E.

Thermochemical storage materials having the general formula AxA′1-xByB′1-yO3-δ, where A=La, Sr, K, Ca, Ba, Y and B=Mn, Fe, Co, Ti, Ni, Cu, Zr, Al, Y, Cr, V, Nb, Mo, are disclosed. These materials have improved thermal storage energy density and reaction kinetics compared to previous materials. Concentrating solar power thermochemical systems and methods capable of storing heat energy by using these thermochemical storage materials are also disclosed.

More Details

Aeroelastic oscillations of a pitching flexible wing with structural geometric nonlinearities: Theory and numerical simulation

Journal of Sound and Vibration

Robinson, Brandon; Da Costa, Leandro; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit

This paper focuses on the derivation of an analytical model of the aeroelastic dynamics of an elastically mounted flexible wing. The equations of motion obtained serve to help understand the behaviour of the aeroelastic wind tunnel setup in question, which consists of a rectangular wing with a uniform NACA 0012 airfoil profile, whose base is free to rotate rigidly about a longitudinal axis. Of particular interest are the structural geometric nonlinearities primarily introduced by the coupling between the rigid body pitch degree-of-freedom and the continuous system. A coupled system of partial differential equations (PDEs) coupled with an ordinary differential equation (ODE) describing axial-bending-bending-torsion-pitch motion is derived using Hamilton's principle. A finite dimensional approximation of the system of coupled differential equations is obtained using the Galerkin method, leading to a system of coupled nonlinear ODEs. Subsequently, these nonlinear ODEs are solved numerically using Houbolt's method. The results that are obtained are verified by comparison with the results obtained by direct integration of the equations of motion using a finite difference scheme. Adopting a linear unsteady aerodynamic model, it is observed that the system undergoes coalescence flutter due to coupling between the rigid body pitch rotation dominated mode and the first flapwise bending dominated mode. The behaviour of the limit cycle oscillations is primarily influenced by the structural geometric nonlinear terms in the coupled system of PDEs and ODE.

More Details

Quantitative investigation of surface structure and interatomic potential with impact-collision ion scattering spectroscopy

Journal of Physics Condensed Matter

Wong, Chun-Shang; Kolasinski, Robert; Whaley, Josh A.

Helium ion beam interactions with materials have important implications for magnetic confinement fusion, material modification, and helium ion microscopy. These interactions depend on the precise physics of how helium ions channel into the materials, which can vary greatly based on the local crystalline orientation. In this work, we performed a dedicated experiment to investigate helium ion channeling in a well-characterized tungsten single crystal. Time-of-flight impact-collision ion scattering spectroscopy was used to obtain multi-angle maps of the backscattering intensity for 3 keV He+ → W(111). We found that the backscattering intensity profile arising from helium ion channeling could be well described by a shadow cone analysis. This analysis revealed that subsurface W atoms as deep as the ninth monolayer contributed to the backscattering intensity profile. Binary collision approximation simulations were performed with MARLOWE to model the experimental maps with sufficient accuracy to allow for quantitative comparisons using reliability factors. These quantitative comparisons were applied to investigate how the W lattice structure and He-W interatomic potential affect the multi-angle maps.

More Details

Viscoelastic Response of Dispersed Entangled Polymer Melts

Macromolecules

Peters, Brandon L.; Salerno, K.M.; Ge, Ting; Perahia, Dvora; Grest, Gary S.

Polymer synthesis routes result in macromolecules with molecular weight dispersity M that depends on the polymerization mechanism. The lowest dispersity polymers are those made by anionic and atom-transfer radical polymerization, which exhibit narrow distributions M = Mw/Mn ∼1.02-1.04. Even for small dispersity, the chain length can vary by a factor of two from the average. The impact of chain length dispersity on the viscoelastic response remains an open question. Here, the effects of dispersity on stress relaxation and shear viscosity of entangled polyethylene melts are studied using molecular dynamics simulations. Melts with chain length dispersity, which follow a Schulz-Zimm (SZ) distribution with M = 1.0-1.16, are studied for times up to 800 μs, longer than the terminal time. These systems are compared to those with binary and ternary distributions. The stress relaxation functions are extracted from the Green-Kubo relation and from stress relaxation following a uniaxial extension. At short and intermediate time scales, both the mean squared displacement and the stress relaxation function G(t) are independent of M. At longer times, the terminal relaxation time decreases with increasing M. In this time range, the faster motion of the shorter chains results in constraint release for the longer chains.

More Details

Co-Optimization of Boost Converter Reliability and Volumetric Power Density Using Genetic Algorithm

ECCE 2020 - IEEE Energy Conversion Congress and Exposition

Gill, Lee; Neely, Jason C.; Rashkin, Lee J.; Flicker, Jack D.; Kaplar, Robert

In power electronic applications, reliability and power density are a few of the many important performance metrics that require continual improvement in order to meet the demand of today's complex electrical systems. However, due to the complexity of the synergy between various components, it is challenging to visualize and evaluate the effects of choosing one component over another and what certain design parameters impose on the overall reliability and lifetime of the system. Furthermore, many areas of electronics have realized remarkable innovation in the integration of new materials of passive and active components; wide-bandgap semiconductor devices and new magnetic materials allow higher operating temperature, blocking voltage, and switching frequency; all of which enable much more compact power converter designs. However, uncertainty remains in the overall electronics reliability in different design variations. Hence, in order to better understand the relationship between reliability and power density in a power electronic system, this paper utilizes a genetic algorithm (GA) to provide pareto optimal solution sets in a multi-variate trade space that relates the Mean Time Between Failures (MTBF) and volumetric power density for the design of a 5 kW synchronous boost converter. Different designs of the synchronous boost converter based on the variation of the electrical parameters and material types for the passive (input and output capacitors, the boost inductor, and the heatsink) and active components (switches) have been studied. A few candidate designs have been evaluated and verified through hardware experiments.

More Details

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David J.; Weis, Matthew R.; Myers, Clayton; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael A.; Knapp, P.F.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Foulk, James W.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Power Flow Spectroscopy Diagnostics & Platform Development at the Z Pulsed Power Facility

Laity, George R.; Johnston, Mark D.; Patel, Sonal G.; Cuneo, Michael E.

Large pulsed power accelerators deliver multi-MJ pulses of electrical energy to a variety of high energy density (HED) physics experiments that support stockpile science programs. Understanding the plasma formation mechanisms and resulting electrical power transport (or "power flow") in the vacuum magnetically insulated transmission lines (MITLs) is an important area of ongoing research, and could provide a means to improve the performance of today's pulsed power accelerators while improving confidence in the design options for next-generation pulsed power concepts. Power flow science has been studied for decades, but these studies have not provided a predictive understanding of plasma formation and expansion in MITL systems. Several recent factors in pulsed power system design have generated a renewed (and urgent) interest in developing validated, multi-physics power flow engineering models with increased scrutiny and understanding. Examples of these factors include (i) the use of high inductance experimental configurations that could increase current "loss", (ii) interest in long-pulse applications that require predictable pulse shapes, and (iii) the desire to develop a deeper understanding of how current loss phenomena scale to larger accelerator configurations. This work is directed to support the validation of multi-physics power flow engineering models required to realize pulsed power systems for the NNSA mission.

More Details

Systematic comparison and cross-validation of fixed-node diffusion Monte Carlo and phaseless auxiliary-field quantum Monte Carlo in solids

Physical Review B

Malone, Fionn D.; Benali, Anouar; Morales, Miguel A.; Caffarel, Michel; Kent, Paul R.C.; Shulenburger, Luke N.

Quantum Monte Carlo (QMC) methods are some of the most accurate methods for simulating correlated electronic systems. We investigate the compatibility, strengths, and weaknesses of two such methods, namely, diffusion Monte Carlo (DMC) and auxiliary-field quantum Monte Carlo (AFQMC). The multideterminant trial wave functions employed in both approaches are generated using the configuration interaction using a perturbative selection made iteratively (CIPSI) technique. Complete basis-set full configuration interaction energies estimated with CIPSI are used as a reference in this comparative study between DMC and AFQMC. By focusing on a set of canonical finite-size solid-state systems, we show that both QMC methods can be made to systematically converge towards the same energy once basis-set effects and systematic biases have been removed. AFQMC shows a much smaller dependence on the trial wave function than DMC while simultaneously exhibiting a much larger basis-set dependence. We outline some of the remaining challenges and opportunities for improving these approaches.

More Details

Modeling strength and failure variability due to porosity in additively manufactured metals

Computer Methods in Applied Mechanics and Engineering

Khalil, Mohammad; Teichert, Gregory H.; Alleman, Coleman; Heckman, Nathan M.; Jones, Reese E.; Garikipati, Krishnakumar; Boyce, Brad L.

To model and quantify the variability in plasticity and failure of additively manufactured metals due to imperfections in their microstructure, we have developed uncertainty quantification methodology based on pseudo marginal likelihood and embedded variability techniques. We account for both the porosity resolvable in computed tomography scans of the initial material and the sub-threshold distribution of voids through a physically motivated model. Calibration of the model indicates that the sub-threshold population of defects dominates the yield and failure response. Finally, the technique also allows us to quantify the distribution of material parameters connected to microstructural variability created by the manufacturing process, and, thereby, make assessments of material quality and process control.

More Details

Method of information entropy for convergence assessment of molecular dynamics simulations

Journal of Applied Physics

Talaat, Khaled; Cowen, Benjamin; Anderoglu, Osman

The lack of a reliable method to evaluate the convergence of molecular dynamics simulations has contributed to discrepancies in different areas of molecular dynamics. In the present work, the method of information entropy is introduced to molecular dynamics for stationarity assessment. The Shannon information entropy formalism is used to monitor the convergence of the atom motion to a steady state in a continuous spatial domain and is also used to assess the stationarity of calculated multidimensional fields such as the temperature field in a discrete spatial domain. It is demonstrated in this work that monitoring the information entropy of the atom position matrix provides a clear indicator of reaching steady state in radiation damage simulations, non-equilibrium molecular dynamics thermal conductivity computations, and simulations of Poiseuille and Couette flow in nanochannels. A main advantage of the present technique is that it is non-local and relies on fundamental quantities available in all molecular dynamics simulations. Unlike monitoring average temperature, the technique is applicable to simulations that conserve total energy such as reverse non-equilibrium molecular dynamics thermal conductivity computations and to simulations where energy dissipates through a boundary as in radiation damage simulations. The method is applied to simulations of iron using the Tersoff/ZBL splined potential, silicon using the Stillinger-Weber potential, and to Lennard-Jones fluid. Its applicability to both solids and fluids shows that the technique has potential for generalization to other areas in molecular dynamics.

More Details

InGaSb Defect Filter Layer to Improve Performance of GaSb Solar Cells Grown on GaAs Substrates

Journal of Electronic Materials

Mansoori, Ahmad; Addamane, Sadhvikas J.; Renteria, Emma J.; Shima, Darryl M.; Balakrishnan, Ganesh

The reduction of the threading dislocation density in metamorphic GaSb grown on GaAs substrates through the use of InGaSb defect filter layers has been investigated. More specifically, we study the effects of strain and thickness on the ability of a InGaSb defect filter layer to reduce threading dislocations in GaSb solar cells grown on GaAs substrates. The strain between the GaSb metamorphic layer on GaAs substrate (99.5% relaxed) and the InGaSb defect filter layer is varied by changing the indium composition in the InGaSb layer. Here, it is demonstrated that an InGaSb defect filter layer with 0.6% strain is more effective for blocking threading dislocations compared with higher-strain layers, resulting in improved short-circuit current (Jsc) and open-circuit voltage (Voc) for the metamorphic GaSb solar cell. The optimization of the defect filter layer involves varying the thickness of the layer to achieve the lowest possible threading dislocation density. This also takes into account the critical thickness of the InGaSb layer on GaSb to avoid generation of threading dislocations from the InGaSb layer itself. It is shown that adding an In0.11Ga0.89Sb defect filter layer with thickness of 250 nm and 0.6% strain beneath a GaSb solar cell grown on a GaAs substrate improves Voc from 0.1 V to 0.16 V and Jsc from 19.7 mA/cm2 to 24.7 mA/cm2.

More Details

Mycobacterium Phage Butters-Encoded Proteins Contribute to Host Defense against Viral Attack [plus supplemental information]

mSystems

Mageeney, Catherine M.; Mohammed, Hamidu T.; Dies, Marta; Anbari, Samira; Cudkevich, Netta; Chen, Yanyan; Buceta, Javier; Ware, Vassie C.

A diverse set of prophage-mediated mechanisms protecting bacterial hosts from infection has been recently uncovered within cluster N mycobacteriophages isolated on the host, Mycobacterium smegmatis mc2155. In that context, we unveil a novel defense mechanism in cluster N prophage Butters. By using bioinformatics analyses, phage plating efficiency experiments, microscopy, and immunoprecipitation assays, we show that Butters genes located in the central region of the genome play a key role in the defense against heterotypic viral attack. Our study suggests that a two-component system, articulated by interactions between protein products of genes 30 and 31, confers defense against heterotypic phage infection by PurpleHaze (cluster A/subcluster A3) or Alma (cluster A/subcluster A9) but is insufficient to confer defense against attack by the heterotypic phage Island3 (cluster I/subcluster I1). Therefore, based on heterotypic phage plating efficiencies on the Butters lysogen, additional prophage genes required for defense are implicated and further show specificity of prophage-encoded defense systems. IMPORTANCE: Many sequenced bacterial genomes, including those of pathogenic bacteria, contain prophages. Some prophages encode defense systems that protect their bacterial host against heterotypic viral attack. Understanding the mechanisms undergirding these defense systems is crucial to appreciate the scope of bacterial immunity against viral infections and will be critical for better implementation of phage therapy that would require evasion of these defenses. Furthermore, such knowledge of prophage-encoded defense mechanisms may be useful for developing novel genetic tools for engineering phage-resistant bacteria of industrial importance.

More Details

Pairing Directional Solar Inputs From Ray Tracing to Solar Receiver/Reactor Heat Transfer Models on Unstructured Meshes: Development and Case Studies

Journal of Solar Energy Engineering

Bush, Hagan E.; Schrader, Andrew J.; Loutzenhiser, Peter G.

A novel method for pairing surface irradiation and volumetric absorption from Monte Carlo ray tracing to computational heat transfer models is presented. The method is well-suited to directionally and spatially complex concentrated radiative inputs (e.g., solar receivers and reactors). The method employs a generalized algorithm for directly mapping absorbed rays from a Monte Carlo ray tracing model to boundary or volumetric source terms in the computational mesh. The algorithm is compatible with unstructured, two and three-dimensional meshes with varying element shapes. Four case studies were performed on a directly irradiated, windowed solar thermochemical reactor model to validate the method. The method was shown to conserve energy and preserve spatial variation when mapping rays from a Monte Carlo ray tracing model to a computational heat transfer model in ansys fluent.

More Details

What's the gap? A possible strategy for advancing theory, and an appeal for experimental structure data to drive that advance

RSC Advances

Foster, Michael E.; Sohlberg, Karl

There is substantial demand for theoretical/computational tools that can produce correct predictions of the geometric structure and band gap to accelerate the design and screening of new materials with desirable electronic properties. DFT-based methods exist that reliably predict electronic structure given the correct geometry. Similarly, when good spectroscopic data are available, these same methods may, in principle, be used as input to the inverse problem of generating a good structural model. The same is generally true for gas-phase systems, for which the choice of method is different, but factors that guide its selection are known. Despite these successes, there are shortcomings associated with DFT for the prediction of materials' electronic structure. The present paper offers a perspective on these shortcomings. Fundamentally, the shortcomings associated with DFT stem from a lack of knowledge of the exact functional form of the exchange–correlation functional. Inaccuracies therefore arise from using an approximate functional. These inaccuracies can be reduced by judicious selection of the approximate functional. Other apparent shortcomings present due to misuse or improper application of the method. One of the most significant difficulties is the lack of a robust method for predicting electronic and geometric structure when only qualitative (connectivity) information is available about the system/material. Herein, some actual shortcomings of DFT are distinguished from merely common improper applications of the method. The role of the exchange functional in the predicted relationship between geometric structure and band gap is then explored, using fullerene, 2D polymorphs of elemental phosphorus and polyacetylene as case studies. The results suggest a potentially fruitful avenue of investigation by which some of the true shortcomings might be overcome, and serve as the basis for an appeal for high-accuracy experimental structure data to drive advances in theory.

More Details

Applicability for MELCOR Accident Code System (MACCS) to Model the Atmospheric Transport of Biological Contaminants

Leute, Jennifer E.

Characterization of airborne transmission behavior for biological contaminants is a critical aspect in developing public health guidelines in the event of an outbreak. Guidelines such as safe separation distances and physical protections (mask and face-shields) are heavily influenced by the particular biological airborne transmission risk, which depends on a multitude of factors and is not easily or readily determined, therefore potentially lagging behind the time sensitive need to inform effective public health guidelines. Herein is proposed a means to leverage the substantial investment over the last three decades of the Nuclear Regulatory Commission in the MACCS code suite developed at Sandia National Laboratories. This work includes augmenting the MACCS code to represent biological rather than radioactive contaminants in the atmosphere, therefore characterizing the airborne transmission risk for such contaminants and helping to inform critical and time sensitive public health guidelines.

More Details

Stronger field-emission science via coupling novel nanoscale imaging techniques

Bussmann, Ezra; Ohta, Taisuke; Kazanowska, Barbara A.; Wang, George T.; Tandon, Rajan

We implemented a vacuum field emission electron microscope (FEM) using the electron optics of a low-energy /photoemission electron microscope (LEEM/PEEM). Historically, there have been other FEM hardware platforms, and the distinctive feature of our method is that it integrates with the LEEM/PEEM and associated techniques, enabling a powerful multi-capability toolset for studying fundamental materials properties underpinning field emission (FE) and vacuum arc initiation. Typically, LEEM is used to image surface structure, which influences both work function and electric field distribution near a surface, while PEEM is used to map photoelectric work function across a surface. Our FEM adds the capability for spatially-correlated coincident-site measurements of FE currents to go-along with structure and work function. LEEM, PEEM, and our FEM implementation achieve nanoscale spatial resolution relevant for materials studies in nanoscience/engineering. Our approach requires a straightforward calibration of the electron optics to enable focused FEM imaging under intentional electric field variation. We demonstrate the FEM approach by imaging field emitter arrays relevant for vacuum nanoelectronics. We demonstrate submicron spatial resolution and dynamic measurement of FE versus applied electric field. We anticipate this capability will enable fundamental structure-function studies of FE and arc initiation.

More Details

Molecule Origins of Dipolar Character in Excited Electronic States

Harvey, Jacob A.

The molecular level origins for symmetry breaking in the excited state of symmetrical quadrupolar molecules, particularly in polar solvents, was investigated using time-dependent density functional theory approaches. Molecules of the form ADA (A/D electron accepting/donating respectively), have been shown to break their symmetry upon excitation, producing an intramolecular charge transfer event and permanent dipole. Current research indicates that polar solvents stabilize the charge transfer event thereby producing asymmetrical solvent dynamics on opposite ends of the molecules. In this work key structural features of the molecule were identified including (1) incorporation of cyano groups, (2) rotation of grafted phenyl rings, and (3) the length of the conjugated R group chain. More specifically, incorporation of cyano groups appears to decrease the magnitude of the dipole in the excited state, thereby indicating that solvent interactions at these groups do not stabilize the charge transfer. While the rotation of the phenyl groups appears to be necessary to break the symmetry of the excited state in the molecule.

More Details

Isomer-Dependent Reaction Mechanisms of Cyclic Ether Intermediates: cis-23-Dimethyloxirane and trans-23-Dimethyloxirane

International Journal of Chemical Kinetics

Doner, Anna C.; Davis, Matthew M.; Koritzke, Alanna L.; Christianson, Matthew G.; Turney, Justin M.; Schaefer, Henry F.; Sheps, Leonid; Osborn, David L.; Taatjes, Craig A.; Rotavera, Brandon

Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-˙QOOH) or from reactions of HÒO with alkenes. The cis- and trans-isomers of 2,3-dimethyloxirane are intermediates of n-butane oxidation, and while rate coefficients for β-˙QOOH → 2,3-dimethyloxirane + OH are reported extensively, subsequent reaction mechanisms of the cyclic ethers are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe the consumption of 2,3-dimethyloxirane by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present research examines the isomerdependence of 2,3-dimethyloxirane reaction mechanisms in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred via the detection of products from Cl-initiated oxidation of both cis-2,3-dimethyloxirane and trans-2,3-dimethyloxirane using multiplexed photoionization mass spectrometry (MPIMS). The experiments were conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, the enthalpies of stationary points on the ˙R + O2 surfaces were computed at the ccCA-PS3 level of theory. In total, 28 barrier heights were computed on the 2,3-dimethyloxiranylperoxy surfaces. Two notable aspects are low-lying pathways that form resonance-stabilized ketohydroperoxide-type radicals caused by ˙QOOH ring-opening when the unpaired electron is localized adjacent to the ether group, and cis-trans isomerization of ˙R and ˙QOOH radicals, via inversion, which enable reaction pathways otherwise restricted by stereochemistry. Several species were identified in the MPIMS experiments from ring opening of 2,3-dimethyloxiranyl radicals. Neither of the two conjugate alkene isomers prototypical of ˙R + O2 reactions were detected. Products were also identified from decomposition of ketohydroperoxide-type radicals. The present work provides the first analysis of 2,3-dimethyloxirane oxidation chemistry and reveals that consumption pathways are complex and require the expansion of submechanisms in chemical kinetics mechanisms.

More Details

Enhance coherence time in intensely driven quantum systems

Pan, Wei; Reno, John L.; Tranchida, Julien

Not long ago, it was shown that a discrete time crystal can be realized if a quantum system is periodically driven to a non-equilibrium state. Proof-of-concept experiments are reported by two groups using trapped ions and nitrogen-vacancy centers in diamond, respectively. The concept of discrete time crystals vividly demonstrates that the coherence time of a quantum system may be enhanced by driving the system out of equilibrium. In this project, we want to test this novel concept in another canonical quantum system, the quantum Hall system in a two-dimensional electron gas (2DEG). Compared to other systems, quantum Hall magnetism (QHM) in high quality, industry-compatible GaAs/AlGaAs heterostructures allows for detailed and quantitative studies in a particularly simple and clean environment. This detailed knowledge should help achieve longer coherence times in a driven QHM system. This report will detail the results from a recent study on the stability of the quantum Hall skyrmions (QHS) state at a Landau level filling close to ν = 1 by measuring its current-voltage (I-V) breakdown characteristics under radio-frequency (RF) radiations. We observe that the critical current increases visibly when the RF frequency is right at the Larmor frequency of 75As nuclei, where the hyperfine interaction between electron and nuclear spins perturbs the QHS state most significantly. We believe that this observation is consistent with the novel concept that the coherence time of a quantum system may be enhanced by driving the system out of equilibrium.

More Details

High Fidelity Interface Modeling to Enable Enhanced Electromagnetics ModSim Capabilities

Jones, Adam; Kuether, Robert J.

Years of work by 1350 and others has shown that the phenomenology behind EM penetration of joints and seams is a major driver in the shielding effectiveness of ND systems. Via analysis of a canonical cylindrical geometry and comparison against experimental data, we will provide evidence supporting the theory that proper treatment of contact phenomenology including joint deformation, asperity-induced contact impedance, and appropriate treatment of machining tolerance values is required to match electromagnetics modeling and simulation results to experimental data.

More Details

Ducted Fuel Injection vs. Free-Spray Injection: A Study of Mixing and Entrainment Effects Using Numerical Modeling

SAE International Journal of Engines

Nilsen, Christopher W.; Yraguen, Boni F.; Mueller, Charles J.; Genzale, Caroline; Delplanque, Jean P.

Diesel engines are an important technology for transportation of both people and goods. However, historically they have suffered a significant downside of high soot and nitrogen oxides (NOx) emissions. Recently, ducted fuel injection (DFI) has been demonstrated to attenuate soot formation in compression-ignition engines and combustion vessels by 50% to 100%. This allows for diesel engines to be run at low-NOx emissions that would have otherwise produced significantly more soot due to the soot/NOx tradeoff. Currently the root causes of this soot attenuation are not well understood. To be able to better optimize DFI for use across a variety of engines and conditions, it is important to understand clearly how it works. This study expands on the current understanding of DFI by using numerical modeling under nonreacting conditions to provide insights about the roles of entrainment and mixing that would have been much more challenging to obtain experimentally. This study found that DFI enhances charge gas entrainment upstream of the duct and blocks entrainment inside of the duct. Mixing is enhanced by the duct, which results in lower peak equivalence ratios at the exit of the duct.

More Details

Enhancement of Thermal Conductivity of Bentonite Buffer Materials with Copper Wires/Meshes for High-Level Radioactive Waste Disposal

Nuclear Technology

Wang, Yifeng

In high-level radioactive waste disposal, a heat-generating waste canister is generally encased with a layer of bentonite-based buffer material acting as an engineered barrier to limit water percolation and radionuclide release. The low thermal conductivity of bentonite (~0.5 W/m∙K) combined with a high thermal loading waste package may result in a high surface temperature on the package that can potentially impact the structural integrity of the package itself as well as the surrounding buffer material. We show here that the thermal conductivity of bentonite can be effectively enhanced by embedding copper wires/meshes across the buffer layer to form fully connected high heat conduction pathways. A simple calculation based on Rayleigh’s model shows that a required thermal conductivity of 5 W/m∙K for effective heat dissipation can be achieved simply by adding ~1 vol % of copper wires/meshes into bentonite. As a result, the peak surface temperature on a large waste package such as a dual-purpose canister can be reduced by up to 300°C, leading to a significant reduction in the surface storage time for waste cooling and therefore the overall cost for direct disposal of such waste packages. Because of the ensured full thermal percolation across the buffer layer, copper wires/meshes turn out to be much more effective than any other materials currently suggested (such as graphene or graphite) in enhancing the thermal conductivity of buffer material. Furthermore, the embedded copper wires/meshes can help reinforce the mechanical strength of the buffer material, thus preventing the material from a potential erosion by a possible intrusion of dilute groundwater.

More Details

Threading–Unthreading Transition of Linear-Ring Polymer Blends in Extensional Flow

ACS Macro Letters

O'Connor, Thomas; Grest, Gary S.

Adding small amounts of ring polymers to a matrix of their linear counterparts is known to increase the zero-shear-rate viscosity because of linear-ring threading. Uniaxial extensional rheology measurements show that, unlike its pure linear and ring constituents, the blend exhibits an overshoot in the stress growth coefficient. By combining these measurements with ex-situ small-angle neutron scattering and nonequilibrium molecular dynamics simulations, this overshoot is shown here to be driven by a transient threading–unthreading transition of rings embedded within the linear entanglement network. Prior to unthreading, embedded rings deform affinely with the linear entanglement network and produce a measurably stronger elongation of the linear chains in the blend compared to the pure linear melt. Thus, rings uniquely alter the mechanisms of transient elongation in linear polymers.

More Details

Quantifying Graph Uncertainty from Communication Data

Wendt, Jeremy; Field, Richard V.; Phillips, Cynthia A.; Prasadan, Arvind

Graphs are a widely used abstraction for representing a variety of important real-world problems including emulating cyber networks for situational awareness, or studying social networks to understand human interactions or pandemic spread. Communication data is often converted into graphs to help understand social and technical patterns in the underlying communication data. However, prior to this project, little work had been performed analyzing how best to develop graphs from such data. Thus, many critical, national security problems were being performed against graph representations of questionable quality. Herein, we describe our analyses that were precursors to our final statistically grounded technique for creating static graph snapshots from a stream of communication events. The first analyzes the statistical distribution properties of a variety of real-world communication datasets generally fit best by Pareto, log normal, and extreme value distributions. The second derives graph properties that can be estimated given the expected statistical distribution for communication events and the communication interval to be viewed node observability, edge observability, and expected accuracy of node degree. Unfortunately, as that final process is under review for publication, we can't publish it here at this time.

More Details

Preliminary Reporting of Thermophysical Property Measurements for the Ghareb Formation

Bauer, Stephen J.; Choens II, Robert C.

Accurate knowledge of thermophysical properties of rock is vital to develop meaningful models of high level nuclear waste emplacement scenarios. The Israel Atomic Energy Commission is considering storing high level nuclear waste in the Ghareb formation, a porous kerogen bearing chalk. Sandia is supporting this effort with an evolving lab- based geomechanics testing program. We have completed measurements of thermal properties up to 275C and room temperature hydrostatic compaction measurements. We report thermal conductivity, thermal diffusivity, specific heat, and mass loss from our thermal measurements, and we report bulk moduli and porosity loss from our compaction measurements. These values are crucial for the numerical models to simulate heat transfer and formation compressibility around a heat generating repository.

More Details

Atomic-Scale Control of Electronic Structure and Ferromagnetic Insulating State in Perovskite Oxide Superlattices by Long-Range Tuning of BO6 Octahedra

Advanced Functional Materials

Lu, Ping

Control of BO6 octahedral rotations at the heterointerfaces of dissimilar ABO3 perovskites has emerged as a powerful route for engineering novel physical properties. However, its impact length scale is constrained at 2–6 unit cells close to the interface and the octahedral rotations relax quickly into bulk tilt angles away from interface. Here, a long-range (up to 12 unit cells) suppression of MnO6 octahedral rotations in La0.9Ba0.1MnO3 through the formation of superlattices with SrTiO3 can be achieved. The suppressed MnO6 octahedral rotations strongly modify the magnetic and electronic properties of La0.9Ba0.1MnO3 and hence create a new ferromagnetic insulating state with enhanced Curie temperature of 235 K. The emergent properties in La0.9Ba0.1MnO3 arise from a preferential occupation of the out-of-plane Mn d3z2−r2 orbital and a reduced Mn eg bandwidth, induced by the suppressed octahedral rotations. The realization of long-range tuning of BO6 octahedra via superlattices can be applicable to other strongly correlated perovskites for exploring new emergent quantum phenomena.

More Details

Growth, total lipid, and omega-3 fatty acid production by Nannochloropsis spp. cultivated with raw plant substrate

Algal Research

Schambach, Jenna Y.; Finck, Anna M.; Kitin, Peter; Hanschen, Erik R.; Hunt, Christopher G.; Vogler, Brian; Starkenburg, Shawn R.; Barry, Amanda

Improving productivity and lipid concentration in microalgae is important for the economic success of both biofuel and microalgae coproducts production. Nannochloropsis spp. are marine microalgae currently being grown at large-scale for the production of biofuel and lipid coproducts. Here we demonstrate improvements of growth and omega-3 production in Nannochloropsis gaditana CCMP526 and Nannochloropsis oceanica CCAP849/10 with plant substrate addition, a potentially economical option for increasing microalgal productivity. We examine growth in the presence of corn stover, switchgrass, sugarcane bagasse, and yard waste. By examining the microbial ecology of N. gaditana cultures with and without plant substrate and with and without antibiotics, we discovered a potential bacterial interaction in these cultures, but its presence is not necessary for algal growth improvements in the presence of plant substrate. Analysis of plant substrate morphology by scanning electron microscopy (SEM) after cultivation in media with and without N. gaditana shows a degradation of specific plant structural features and a colonization of the plant phloem by N. gaditana. An examination of N. gaditana in a Congo red plate assay indicates potential cellulolytic activity, but a preliminary examination of the potential cellulase transcripts does not reveal differential expression of a candidate in the presence of plant. This evidence demonstrates potential raw plant utilization by a marine microalga for increased productivity and provides a potentially economical option for increasing coproduct concentration at industrial scale without genetic engineering.

More Details

A Block-Based Triangle Counting Algorithm on Heterogeneous Environments

Yasar, Abdurrahman; Rajamanickam, Sivasankaran; Berry, Jonathan; Catalyurek, Umit V.

Triangle counting is a fundamental building block in graph algorithms. In this paper, we propose a block-based triangle counting algorithm to reduce data movement during both sequential and parallel execution. Our block-based formulation makes the algorithm naturally suitable for heterogeneous architectures. The problem of partitioning the adjacency matrix of a graph is well-studied. Our task decomposition goes one step further: it partitions the set of triangles in the graph. By streaming these small tasks to compute resources, we can solve problems that do not fit on a device. We demonstrate the effectiveness of our approach by providing an implementation on a compute node with multiple sockets, cores and GPUs. The current state-of-the-art in triangle enumeration processes the Friendster graph in 2.1 seconds, not including data copy time between CPU and GPU. Using that metric, our approach is 20 percent faster. When copy times are included, our algorithm takes 3.2 seconds. This is 5.6 times faster than the fastest published CPU-only time.

More Details

Photocatalytic Material Surfaces for SARS-CoV-2 Virus Inactivation

Negrete, Oscar N.; Bradfute, Steven; Larson, Steven R.; Sinha, Anupama; Coombes, Kenneth R.; Goeke, Ronald S.; Keenan, Lisa A.; Duay, Jonathon; Van Heukelom, Michael; Meserole, Stephen; Jacobs-Gedrim, Robin B.

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) can be spread through close contact or through fomite mediated transmission. This study details the fabrication and analysis of a photocatalyst surface which can rapidly inactivate SARS-COV-2 to limit spread of the virus by fomite mediated transmission. The surface being developed at Sandia for this purpose is a minimally hazardous Ag-Ti0 2 nanomaterial which is engineered to have high photocatalytic activity. Initial results at Sandia California in a BSL-2 safe surrogate virus- Vesicular Stomatitis Virus (VSV) show a significant difference between the photocatalyst material under exposure to visible light than controls. Additionally, UV-A light (365 nm) was found to eliminate SARS-COV-2 after 9 hours on all tested surfaces with irradiance of 15 mW/cm 2 equivalent to direct circumsolar irradiance.

More Details

Climate Influences on Capacity Expansion Planning with Application to the Western U.S

Tidwell, Vincent C.; Cohen, Stuart; Dyreson, Ana; Miara, Ariel; Macknick, Jordan; Voisin, Nathalie; Turner, Sean

Electric power system planners utilize a variety of planning tools to inform decisions concerning generation and transmission additions to the electric grid, the need for operational changes, and to evaluate potential stressors on the system. Numerous factors contribute to the planning process including projected fuel and technology costs, policy and load profiles. There is also a growing recognition of the interdependency of the electric grid with other natural and engineered systems. Here we explore how future climate change and hydropower operability might influence decisions related to electricity capacity expansion planning and operations. To do so we assemble a multi-model framework. Specifically, water resource modeling is used to simulate climate impacts on future water supply for thermoelectric and hydropower generation. Separately, temperature impacts on electricity load are evaluated. Together, these climate factors spatially constrain a capacity expansion model that projects generation and transmission additions to the grid. The projected new capacity-builds are then evaluated on their operations, reliability, and cost under average and extreme climate conditions using production cost modeling. This coupled framework is demonstrated on the electric grid in the Western U.S., supporting capacity expansion planning by WECC, the North American Electric Reliability Corporation (NERC) regional entity responsible for reliability assurance of the Western Interconnection. This region was selected in part because the West is unique in that it has high potential for renewable penetrations and is experiencing large retirements/displacements of baseload resources, primarily coal, leading to possible operational challenges in terms of changing resource mix and the need for resource flexibility. Toward this challenge, planning scenarios encompass a range of alternative energy, climate and drought futures. In this context we explore answers to two strategic questions: 1) How does changing climate influence electricity expansion planning (generation and transmission) and future operations, including type and capacity of new builds, system reliability, cost and environmental impacts? 2) How does the representation of hydropower in the modeling framework influence the evaluation of bulk power system operations? Results indicate that climate has a measurable influence on recommendations concerning the capacity, type and location of new generation and transmission additions, with up to 17 GW additional capacity needed by 2038 to meet peak loads (~6.6% increase over capacity-builds based on historical climate). The extent of additional infrastructure needs is strongly influenced by future water availability for hydropower and the potential deployment of demand response technologies. Systems designed for future climate conditions were found to maintain high system reliability under a range of electricity and water availability scenarios (including significant drought), with minimal system curtailments. Additional capacity needs due to higher load tend to increase cumulative 20-year investment and operating costs by $\$$5-$\$$17 billion and generation costs increase by 9 to 19%. Finally, changing the representation of hydropower flexibility has a relatively small influence on capacity expansion in the Western Interconnection through 2038, but hydropower flexibility impacts generation costs to a similar extent as climate.

More Details

Nanoscale Mg-B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties

Journal of Physical Chemistry C

Liu, Y.S.; Ray, K.G.; Jorgensen, M.; Klebanoff, L.E.; Mattox, T.M.; Cowgill, D.F.; Eshelman, H.V.; Sawvel, A.M.; Snider, J.L.; York, W.; Wijeratne, P.; Pham, A.L.; Gunda, H.; Li, S.; Heo, T.W.; Kang, S.; Jensen, T.R.; Stavila, Vitalie; Wood, B.C.

Metal borides have attracted the attention of researchers due to their useful physical properties and unique ability to form high hydrogen-capacity metal borohydrides. We demonstrate improved hydrogen storage properties of a nanoscale Mg-B material made by surfactant ball milling MgB2 in a mixture of heptane, oleic acid, and oleylamine. Transmission electron microscopy data show that Mg-B nanoplatelets are produced with sizes ranging from 5 to 50 nm, which agglomerate upon ethanol washing to produce an agglomerated nanoscale Mg-B material of micron-sized particles with some surfactant still remaining. X-ray diffraction measurements reveal a two-component material where 32% of the solid is a strained crystalline solid maintaining the hexagonal structure with the remainder being amorphous. Fourier transform infrared shows that the oleate binds in a "bridge-bonding"fashion preferentially to magnesium rather than boron, which is confirmed by density functional theory calculations. The Mg-B nanoscale material is deficient in boron relative to bulk MgB2 with a Mg-B ratio of ∼1:0.75. The nanoscale MgB0.75 material has a disrupted B-B ring network as indicated by X-ray absorption measurements. Hydrogenation experiments at 700 bar and 280 °C show that it partially hydrogenates at temperatures 100 °C below the threshold for bulk MgB2 hydrogenation. In addition, upon heating to 200 °C, the H-H bond-breaking ability increases ∼10-fold according to hydrogen-deuterium exchange experiments due to desorption of oleate at the surface. This behavior would make the nanoscale Mg-B material useful as an additive where rapid H-H bond breaking is needed.

More Details

Advances in GDSA Framework Development and Process Model Integration

Mariner, Paul; Nole, Michael A.; Basurto, Eduardo; Berg, Timothy M.; Chang, Kyung W.; Debusschere, Bert; Eckert, Aubrey; Ebeida, Mohamed; Gross, Mike; Hammond, Glenn; Harvey, Jacob A.; Jordan, Spencer H.; Kuhlman, Kristopher L.; Laforce, Tara C.; Leone, Rosemary C.; Mclendon, William; Mills, Melissa M.; Park, Heeho D.; Foulk, James W.; Foulk, James W.; Seidl, D.T.; David, Sevougian; Stein, Emily; Swiler, Laura P.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2020 advances of the Geologic Disposal Safety Assessment (GDSA) Framework and PFLOTRAN development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of disposal options and generic sites. The capability is a framework called GDSA Framework that employs high-performance computing (HPC) capable codes PFLOTRAN and Dakota.

More Details

CENC PSN VOID FY20 Report

Foulk, James W.; Carr, Ed

Maritime trade accounts for approximately 80 percent of international commerce. The high volume of vessels traversing domestic and international ports makes port areas prime targets for terrorism as well as illegal trafficking of drugs and arms (conventional or nuclear). Port security is therefore a worldwide concern affecting global economies, freedom of movement, and national security. However, extensive port monitoring is inherently complex and time consuming — making it truly viable only via an automated framework that can detect potential illicit activity and alert authorities in a timely manner. The development of image processing algorithms for this purpose requires access to large, labeled datasets that cover the breadth of targets of interest as well as the environments that they are observed within. Curated and labeled datasets of this nature are of enormous value to Sandia's Defense Nuclear Nonproliferation and National Security Program portfolios, as well as to Sandia's machine learning/automatic target recognition (ML/ATR) algorithm development and R&D communities. The goal of this project is to create a commercial satellite imagery dataset of labeled maritime vessels in port areas to support the development of ML/ATR algorithms for port security nonproliferation purposes. This dataset — Port Security Nonproliferation Vessel Overhead Imagery Dataset (PSN VOID) — has the potential to support a variety of other ancillary missions, such as maritime domain awareness, domestic and international security, drug interdiction, and weapons trafficking.

More Details

Pre Symptomatic COVID Screening

Foulk, James W.; Foulk, James W.; Polsky, Ronen

Temperature checks for fever are extensively used for preliminary COVID screenings but are ineffective during the incubation stage of infection when a person is asymptotic. Researchers at the European Centre for Disease Prevention and Control concluded that approximately 75% of passengers infected with COVID-19 and traveling from affected Chinese cities would not be detected by early screening. Core body temperature is normally kept within a narrow range and has the smallest relative standard deviation of all vital signs. Heat in the body is prioritized around internal organs at the expense of the periphery by controlling blood flow. In fact, blood flow to the skin may vary by a factor of 100 depending on thermal conditions. This adaptation causes rapid temperature fluctuations in different skin regions from changes in cardiac output, metabolism, and likely cytokine diffusion during inflammation that would not be seen in average core body temperature. Current IR and thermal scanners used for temperature checks are not necessarily reflective of core body temperatures and require cautious interpretation as they frequently result in false positive and false negative diagnosis. Hand held thermometers measure average skin temperatures and can get readings that differ from core body temperature by as much as 7°. Rather than focusing on a core body temperature threshold assessment we believe that variability of temperature patterns using a novel wearable transdermal microneedle sensor will be more sensitive to infections in the incubation stage and propose to develop a wearable transdermal temperature sensor using established Sandia microneedle technology for pre symptomatic COVID screening that can additionally be used to monitor disease progression at later stages.

More Details

Room Temperature Quasi-static Characterization and Constitutive Model Parametrization of Flexible Polyurethane Foams of Different Densities Loaded in Different Orientations

Long, Kevin N.; Hamel, Craig; Waymel, Robert; Bolintineanu, Dan S.; Quintana, Enrico C.; Kramer, S.L.B.

This report describes the efforts to characterize and model General Plastics TF6070 and EF4000 flexible polyurethane foams under room temperature, large deformation quasi-static cyclic mechanical loading conditions. Densities from three to fifteen pound per cubic foot (PCF) are examined, which correspond to relative densities of approximately 4 to 20%. These foams are open cell structured and flexible at room temperature with a glass transition transition less than -30°C, and they fully recover their original shape when unloaded (at room temperature). Uniaxial compression tests were conducted with accompanying lateral image series for Digital Image Correlation (DIC) analysis with the goal of extracting transverse strain responses. Due to difficulties with DIC analysis at large strains, lateral strains were instead extracted for each test via edge tracking. The experimental results exhibit a nonlinear elastic response and anisotropic material behavior (particularly for the lower densities). Some hysteresis is observed that is different between the first and subsequent cycles of deformation indicating both a small degree of permanent damage (reduced stiffness during reloading) and viscoelasticity. These inelastic mechanisms are not considered in the modeling and calibration in this report. This work considers only the rate independent, room temperature foam behavior. Individual foam densities were calibrated for loading in two directions, parallel and perpendicular to the foam bubble rise direction, since the mechanical behavior is different in these two directions. The Flex Foam constitutive model was used for all parameterizations despite the fact that the model is isotropic. A review of the constitutive model is given as well as necessary data reduction procedures to parameterize it for each foam density and orientation are discussed. Finally, two different parameterizations are developed that take the undeformed foam density as an input that span all densities considered. These two parameterized models represent foams loaded in the rise and transverse directions respectively. We summarize the assumptions and limitations of the parameterizations provided in this report to guide analysis choices with them. All parameterizations presented herein have the following traits, room temperature, rate independent, damage-free, and non-dissipative . Isotropy (even if they are representing anisotropic data). Supplied Sierra Solid Mechanics Flex Foam Model Inputs are in units: pounds, inches, Celsius, and seconds

More Details

Multiscale modeling high-order methods and data-driven modeling

Parish, Eric

Projection-based reduced-order models (ROMs) comprise a promising set of data-driven approaches for accelerating the simulation of high-fidelity numerical simulations. Standard projection-based ROM approaches, however, suffer from several drawbacks when applied to the complex nonlinear dynamical systems commonly encountered in science and engineering. These limitations include a lack of stability, accuracy, and sharp a posteriori error estimators. This work addresses these limitations by leveraging multiscale modeling, least-squares principles, and machine learning to develop novel reduced-order modeling approaches, along with data-driven a posteriori error estimators, for dynamical systems. Theoretical and numerical results demonstrate that the two ROM approaches developed in this work - namely the windowed least-squares method and the Adjoint Petrov - Galerkin method - yield substantial improvements over state-of-the-art approaches. Additionally, numerical results demonstrate the capability of the a posteriori error models developed in this work.

More Details

Radar Motion Measurements and Synthetic Aperture Radar Image Geolocation Accuracy

Doerry, Armin W.; Bickel, Douglas L.

Once a Synthetic Aperture Radar (SAR) image is formed, the natural question then is, "Where is this image?" and/or "Where exactly is this feature displayed in the image?" Thus, geolocation is an important exploitation of the SAR image. Since SAR measures relative location to its own position, it is crucial to understand how the radars position and motion imp acts the ability to geolocate a feature in the SAR image. Furthermore, accuracy and precision of navigation aids like GPS directly impact the goodness of the geolocation solution. These relationships are developed and discussed.

More Details

Statistical Profiles of E1 EMP Coupling to Single Conductors

Schiek, Richard; Halligan, Matthew

An electro-magnetic pulse (EMP) event can induce large currents and voltages on electrical conductors such as electrical power transmission lines which span many kilometers and the shorter lines typically tens of meters in length used to monitor equipment controlling the power grid. The exact current and voltage induced on a conductor depends on many factors, such as line height, diameter and length as well as ground conductivity and the location of the EMP event relative to the conductor. The current work focus on the line location and orientation relative to the EMP source. A statistical, Monte-Carlo approach is used in sampling the line configuration and then calculating the induced current and voltage. Thousands of EMP events are simulated on the region of the Earth where the EMP event can couple to a given above-ground conductor and the resulting current and voltage is then calculated on that conductor. Through the many simulations, one can assemble statistics on the insult including the peak value, rise time and pulse width.

More Details

Hydrogen Plant Hazards and Risk Analysis Supporting Hydrogen Plant Siting near Nuclear Power Plants (Final Report)

Glover, Austin M.; Brooks, Dusty M.; Baird, Austin R.

Nuclear power plants (NPPs) are considering flexible plant operations to take advantage of excess thermal and electrical energy. One option for NPPs is to pursue hydrogen production through high temperature electrolysis as an alternate revenue stream to remain economically viable. The intent of this study is to investigate the risk of a high temperature steam electrolysis hydrogen production facility (HTEF) in close proximity to an NPP. This analysis evaluates a postulated HTEF located 1 km from an NPP, including the likelihood of an accident and the associated consequence to critical NPP targets. This analysis shows that although the likelihood of a leak in an HTEF is not negligible, the consequence to critical NPP targets is not expected to lead to a failure at a distance of 1 km. Furthermore, the minimum separation distance of the HTEF is calculated based on the target fragility criteria of 1 psi defined in Regulatory Guide 1.91.

More Details

Broadband Characterization and Circuit Model Development of Transmission-Scale Transformers

Bowman, Tyler C.; Flicker, Jack D.; Guttromson, Ross; Halligan, Matthew; Llanes, Rodrigo; Schiek, Richard

This report describes broadband measurements of transmission-scale transformers typical in the electric power grid. This work was performed as part of the EMP Resilient Grid LDRD project at Sandia National Laboratories to generate circuit models that can be used for high-altitude electromagnetic pulse (HEMP) coupling simulations and response predictions. The objective of the work was to obtain characterization data of substation yard equipment across a frequency range relevant to HEMP. Vector network analyzer measurements up to 100 MHz were performed on two power transformers at ABB-Hitachi and a single ITEC potential transformer. Custom cable breakouts were designed to interface with the transformer terminals and provide ground connections to the chassis at the base of the transformer bushings. The three-phase terminals of the power transformers were measured as a common mode impedance using a parallel resistive splitter, and the single-phase terminals of the potential transformer were measured directly. A vector fitting algorithm was used to empirically fit circuit models to the resulting two-port networks and input impedances of the measured objects. Simplified circuit representations of the input impedances were also generated to assess the degree of precision needed for high-altitude electromagnetic pulse response predictions, which were performed in Sandia's XYCE circuit simulator platform. HEMP coupling simulations using the transformer models showed significant reduction in the voltage peak and broadening in the pulse width seen at the power transformer compared to the traveling wave voltage. This indicated the importance of the load condition when defining the coupled insult in an electric power substation. Simplified circuit models showed a similar voltage at the transformer with a smoothed waveform. The presence of potential transformers in the simulation did not significantly change the simulated voltage at the power transformer. Single-port input impedance models were also developed to define load conditions when transfer characteristics were not necessary.

More Details

E-PiPEline: Face Shields and Face Coverings Using Commonly Available Materials

Rossman, Grant A.; Avina, Isaac C.; Steinfeldt, Bradley

The Center for Disease Control has recommended that the public should wear cloth face coverings in public settings . Face coverings and face shields can be made by using Commonly Available Materials (CAMs). As part of the Sandia COVID - 19 LDRD effort (funded under the Materials Science Investment Area), the Sandia E - PiPEline task evaluated design options for face coverings and face shields considering their effectiveness, durability, build difficulty, build cost, and comfort. Observations from this investigation are presented here to provide guidelines for home construction of face coverings and face shields

More Details

Sandia's Research in Support of COVID-19 Pandemic Response: Materials Science

Rossman, Grant A.; Avina, Isaac C.; Steinfeldt, Bradley; Koplow, Jeffrey; Smith, Kent; Jouravel, Natalie; Buffleben, George M.; Sinha, Anupama; Negrete, Oscar N.; Barnett, Todd; Karnesky, Richard A.; Melia, Michael A.; Taylor, Jason M.; Sorensen, Neil R.; Ackermann, Mark R.; Bachand, George D.; Harmon, Brooke N.; Jones, Brad H.; Miller, Philip R.; James, Anthony R.; Stefan, Maxwell; Burton, Patrick D.; Tezak, Matt; Corbin, William; Ricken, Bryce; Atencio, Lauren; Cahill, Jesse; Martinez-Sanchez, Andres M.; Grillet, Anne M.; Dickens, Sara M.; Martin, Ahadi-Yusuf; Tucker, Mark; Hermina, Wahid L.; Foulk, James W.

Sandia Materials Science Investment Area contributed to the SARS-CoV-2 virus and COVID-19 disease which represent the most significant pandemic threat in over 100 years. We completed a series of 7, short duration projects to provide innovative materials science research and development in analytical techniques to aid the neutralization of COVID-19 on multiple surfaces, approaches to rapidly decontaminate personal protective equipment, and pareto assessment of construction materials for manufacturing personal protective equipment. The developed capabilities and processes through this research can help US medical personnel, government installations and assets, first responders, state and local governments, and multiple federal agencies address the COVID-19 Pandemic.

More Details

Interactions between Surface Chemistry and Gas-Phase Combustion: New Optical Tools for Probing Flame-Wall Interactions and the Heterogeneous Chemistry of Soot Growth and Oxidation in Flame. Final report

Kliewer, Christopher

Some of the most stubborn and technologically critical problems in combustion are dominated by heterogeneous processes. While purely gas-phase combustion systems have been the subject of intense theoretical and experimental study, combustion phenomena occurring at interfaces are far less understood. This is partly caused by the lack of experimental approaches capable of probing locations very close to an interface, especially in the hostile environment of combustion. For laser-based optical techniques, measurements taken near interfaces are often complicated by laser scattering from the surface interfering with relatively weak signals. Further, for measurements intended to probe molecular species adsorbed at the interface between a gas-phase combustion reaction and a condensed phase material, signals are generally overwhelmed by contributions from the bulk phases, causing the small contribution from the interfacial molecular species to be undetectable. Our goal in this project has been to develop new optical tools for imaging chemical species, temperature, and surface species at and near surfaces or interfaces of relevance to combustion. We have placed focus on the development and refinement of ultrafast techniques such as femtosecond coherent Raman imaging and femtosecond/picosecond sum-frequency generation (SFG) scattering, as well as the models used to simulate such spectra under differing conditions of pressure and chemical speciation. The two physical phenomena initially targeted for study in this project were flamewall interactions, and the growth of particulates in flames.

More Details

Adaptive Recovery Model: Designing Systems for Testing Tracing and Vaccination to Support COVID-19 Recovery Planning

Beyeler, Walter E.; Foulk, James W.; Klise, Katherine A.; Makvandi, Monear; Finley, Patrick D.

This report documents a new approach to designing disease control policies that allocate scarce testing, contact tracing, and vaccination resources to better control community transmission of COVID19 or similar diseases. The Adaptive Recovery Model (ARM) combines a deterministic compartmental disease model with a stochastic network disease propagation model to enable us to simulate COVID-19 community spread through the lens of two complementary modeling motifs. ARM contact networks are derived from cell-phone location data that have been anonymized and interpreted as individual arrivals to specic public locations. Modeling disease spread over these networks allows us to identify locations within communities conducive to rapid disease spread. ARM applies this model- and data-derived abstractions of community transmission to evaluate the effectiveness of disease control measures including targeted social distancing, contact tracing, testing and vaccination. The architecture of ARM provides a unique capacity to help decision makers understand how best to deploy scarce testing, tracing and vaccination resources to minimize disease-spread potential in a community. This document details the novel mathematical formulations underlying ARM, presents a dynamical stability analysis of the deterministic model components, a sensitivity analysis of control parameters and network structure, and summarizes a process for deriving contact networks from cell-phone location data. An example use case steps through applying ARM to evaluate three targeted social distancing policies using Bernalillo County, New Mexico as an exemplar test locale. This step-by-step analysis demonstrates how ARM can be used to measure the relative performance of competing public health policies. Initial scenario tests of ARM shows that ARMs design focus on resource utilization rather than simple incidence prediction can provide decision makers with additional quantitative guidance for managing ongoing public health emergencies and planning future responses.

More Details

EMP-Resilient Electric Grid Transformer Analysis

Clem, Paul; Wang, Ellie Y.; Kotulski, Joseph D.

The response of a high - voltage (HV) transformer to fast rise time voltages, such as that from a electromagnetic pulse (EMP) can result in interruption of power distribution and possibly system failure. To help identify these potential occurrences, it is necessary to develop a transformer model that not only captures the input/output response of the transformer but also the internal behavior. The model constructed should cover the frequency band of interest while capturing the internal physical and electrical characteristics. This broad-band, high-fidelity model would enable the prediction of unwanted effects through simulation. A proposed modeling scheme for a HV transformer is described in Part 1 of this report. Part 2 of this report details assessments of internal voltage and electrical field holdoff testing of transformer insulation dielectric breakdown, including comparison of low frequency (DC/60 Hz) holdoff to rise times characteristic of lightning (1 s) and EMP E1 transients (10 - 30 ns). This initial project is a path toward establishing electrical grid transformer failure criteria for EMP voltage transients. We developed modeling methods and measured breakdown electrical field statistical distributions for direct current, 60 Hz, lightning and EMP characteristic voltage rise times. Methods of nanosecond-scale capacitive discharge unit high voltage source development, suggestions for derating of 60 Hz insulation maximum electrical fields for EMP nanosecond pulse voltage withstand rating, and potential methods for increasing transformer resilience to such fast rise time pulses are described.

More Details

TChem v2.0 - A Software Toolkit for the Analysis of Complex Kinetic Models

Safta, Cosmin; Kim, Kyungjoo; Diaz-Ibarra, Oscar H.; Najm, Habib N.

TChem is an open source software library for solving complex computational chemistry problems and analyzing detailed chemical kinetic models. The software provides support for: complex kinetic models for gas-phase and surface chemistry; thermodynamic properties based on NASA polynomials; species production/consumption rates; stable time integrator for solving stiff time ordinary differential equations; and, reactor models such as homogenous gas-phase ignition (with analytical Jacobian matrices), continuously stirred tank reactor, plug-flow reactor. This toolkit builds upon earlier versions that were written in C and featured tools for gas-phase chemistry only. The current version of the software was completely refactored in C++, uses an object-oriented programming model, and adopts Kokkos as its portability layer to make it ready for the next generation computing architectures i.e., multi/many core computing platforms with GPU accelerators. We have expanded the range of kinetic models to include surface chemistry and have added examples pertaining to Continuously Stirred Tank Reactors (CSTR) and Plug Flow Reactor (PFR) models to complement the homogenous ignition examples present in the earlier versions. To exploit the massive parallelism available from modern computing platforms, the current software interface is designed to evaluate samples in parallel, which enables large scale parametric studies, e.g. for sensitivity analysis and model calibration.

More Details

Predictive Skill of Deep Learning Models Trained on Limited Sequence Data

Safta, Cosmin; Lee, Kookjin L.; Ray, Jaideep

In this report we investigate the utility of one-dimensional convolutional neural network (CNN) models in epidemiological forecasting. Deep learning models, especially variants of recurrent neural networks (RNNs) have been studied for influenza forecasting, and have achieved higher forecasting skill compared to conventional models such as ARIMA models. In this study, we adapt two neural networks that employ one-dimensional temporal convolutional layers as a primary building block temporal convolutional networks and simple neural attentive meta-learner for epidemiological forecasting and test them with influenza data from the US collected over 2010-2019. We find that epidemiological forecasting with CNNs is feasible, and their forecasting skill is comparable to, and at times, superior to, RNNs. Thus CNNs and RNNs bring the power of nonlinear transformations to purely data-driven epidemiological models, a capability that heretofore has been limited to more elaborate mechanistic/compartmental disease models.

More Details

Two new SciDAC institutes promote mathematical tools and software technology for high-performance computing

Pieper, Gail; Devine, Karen; Ng, Esmond; Oliker, Leonid; Ross, Robert

Bigger is often said to be better, and the newest extreme-scale computers certainly are bigger, with millions of processing units. Moreover, the breadth of science performed on the U.S. Department of Energy (DOE) computing facilities is expanding, with new technology such as artificial intelligence emerging. These advances are exciting, creating new opportunities for scientific discovery; however, they also raise new questions for scientists who want to exploit these advances for tackling more complex problems. Will my simulation code be able to utilize the accelerators in extreme-scale computing systems? Can I take advantage of the deepening memory hierarchy in heterogeneous processors? Is there a way around bottlenecks caused by the widening ratio of peak floating-point operations per second to I/0 bandwidth? How can I manage my huge amounts of data effectively? Can I analyze data in situ, or must I transfer it to offline storage for later analysis? To address such questions, DOE announced that it is providing $57.5 million over the next five years for two multidisciplinary teams — FASTMath and RAPIDS2 — to develop new tools and techniques to harness supercomputers for scientific discovery. The teams, called SciDAC Institutes, are part of the Scientific Discovery through Advanced Computing program.

More Details

A Systems Engineering Approach to Accident Response Planning

Barrera, Dulce

This paper explores the Systems Engineering structure, strategies and tools for real world scenarios involving work with accident response groups. A systems engineering approach must be taken by the technical teams to prepare for a successful response and design the technical systems in support of the operations. The scope of this project is focused on laying out the foundation of the systems engineering approach taken to help the teams develop an accident response strategy and identify new engineering designs in support of these operations for the black box systems. This Master’s project involves several interdisciplinary teams & stakeholders across different areas. Identifying the proper tools to use is key to addressing the big picture needs of the multiple stakeholders. This project explores some of the key tools used by the integrated team. The integrated project work will primarily take place over the course of 8 weeks via integrated team meetings. Other work in support of this project will take place off-line as needed by the project lead. Details on the prospective timeline, milestones, key dates and work scope can be referenced in other sections of this paper. Key systems engineering methodologies and tools used thus far in support of this project includes: 1) Market Surveys and Interviews, 2) Project Charter, 3) Feasibility Study, 4) Swim Lane Diagram, and 5) Knowledge Management Plan.

More Details

SIERRA Low Mach Module: Fuego Verification Manual - Version 4.58

Author, No

The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the ASC fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the core architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.

More Details

SIERRA Multimechanics Module: Aria Verification Manual - Version 4.58

Author, No

Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verification test suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the test checked under mesh refinement against the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

SIERRA Low Mach Module: Fuego Theory Manual - Version 4.58

Author, No

The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the ASC fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the core architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.

More Details

SIERRA Low Mach Module: Fuego User Manual - Version 4.58

Author, No

The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the ASC fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the core architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.

More Details

SIERRA Multimechanics Module: Aria User Manual - Version 4.58

Author, No

Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newtons method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic -adaptivity and dynamic load balancing are some of Arias more advanced capabilities.

More Details

KOMPASS: Compaction of crushed salt for the safe containment

Czaikowski, Oliver; Friedenberg, Larissa; Mueller-Hoeppe, Nina; Lerch, Christian; Eickemeier, Ralf; Laurich, Ben; Liu, Wenting; Zemke, Kornelia; Luedeling, Christoph; Popp, Till; Foulk, James W.; Mills, Melissa M.; Reedlunn, Benjamin; Duesterloh, Uwe; Lerche, Svetlana; Zhao, Juan

In Germany, rock salt formations are a possible host rock taken into account for the safe disposal of heat-emitting radioactive waste. With respect to crushed salt will be used in the repository for backfilling of open cavitied (using dry material). With time, the crushed salt will be compacted by the convergence of the host rock and reaches porosities comparable with the rock salts. The compaction behaviour of crushed salt has been investigated within the last 40 years, however, its behaviour at low porosities and the resulting low permeabilities becomes relevant with the introduction of the approach of the containment providing rock zone. In the current state, the database and process understanding have some important gaps in knowledge referring the material behaviour, existing laboratory and numerical models, especially for the porosity range. The objective of this project was the development of methods and strategies for the reduction of deficits in the prediction of crushed salt compaction leading to an improvement of the prognosis quality. It includes the development of experimental methods for determining crushed salt properties in the range of low porosities, the enhancement of process understanding and the investigation and development of existing numerical models.

More Details

FOSWEC dynamics and controls test report

Coe, Ryan G.; Bacelli, Giorgio; Forbush, Dominic; Spencer, Steven J.; Dullea, Kevin; Bosma, Bret; Lomonaco, Pedro

This report describes the testing of a model scale wave energy converter. This device, which uses two aps that pivot about a central platform when excited by waves, has a natural frequency within the range of the waves by which it is excited. The primary goal of this test was to assess the degree to which previously developed modeling, experimentation, and control design methods could be applied to a broad range of wave energy converter designs. Testing was conducted to identify a dynamic model for the impedance and excitation behavior of the device. Using these models, a series of closed loop tests were conducted using a causal impedance matching controller. This report provides a brief description of the results, as well as a summary of the device and ex- perimental design. The results show that the methods applied to this experimental device perform well and should be broadly applicable.

More Details

SNL ATDM Software Technologies. ECP Capability Assessment Report for Software Technologies

Oldfield, Ron; Wolf, Michael; Brightwell, Ronald B.

The Exascale Computing Project (ECP) Capability Assessment Report for Software Technologies at Sandia National Laboratories is provided. The projects are now aggregated to include Kokkos, Kokkos Kernels, VTK-m Operating Systems, and On-Node Runtime efforts. Key challenges and solution strategies are presented for each.

More Details

Substation Cable Layouts for EMP Coupling Analysis

Pfeiffer, Robert A.; Llanes, Rodrigo; Warne, Larry K.; Halligan, Matthew

Direct coupling of early-time high-altitude electromagnetic pulse (HEMP) to substation control cables is simulated for cable layouts based on surveys of seven electrical substations in the United States. An analytic transmission line modeling code is used to estimate worst-case coupled current at the terminations of cable segments in or near the control shack. Where applicable, an induced voltage due to cable shield grounding is also estimated. Various configurations are simulated, including cables with different elevations, lengths, radii, and terminations. Plots of the coupled HEMP effects are given, and general relationships between these effects and the substations geometric and material parameters are highlighted and discussed.

More Details

Tribal Colleges and Universities/Advanced Manufacturing Network Initiative (Q4 FY2020 Progress Report)

Atcitty, Stanley

The National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) to 1) align investments in a university capacity and workforce development with the NNSA mission to develop the needed skills and talent for NNSA’s enduring technical workforce at the laboratories and production plants, and 2) to enhance research and education at under-represented colleges and universities. Out of this effort, MSIPP launched a new consortium in early FY17 focused on Tribal Colleges and Universities (TCUs) known as the Advanced Manufacturing Network Initiative (AMNI). This consortium has been extended for FY20 and FY21. The following report summarizes the status update during this quarter.

More Details

Xyce Parallel Electronic Simulator Reference Guide (Version 7.2)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard; Thornquist, Heidi K.; Mei, Ting; Verley, Jason C.; Sholander, Peter E.; Aadithya, Karthik V.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide.

More Details

Xyce Parallel Electronic Simulator Users' Guide (Version 7.2)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard; Thornquist, Heidi K.; Mei, Ting; Verley, Jason C.; Sholander, Peter E.; Aadithya, Karthik V.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiation-aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

AniMACCS User Guide

Foulk, James W.; Leute, Jennifer E.; Bixler, Nathan E.; Whitener, Dustin; Eubanks, Lloyd

This SAND Report provides an overview of AniMACCS, the animation software developed for the MELCOR Accident Consequence Code System (MACCS). It details what users need to know in order to successfully generate animations from MACCS results, to include information on the capabilities, requirements, testing, limitations, input settings, and problem reporting instructions for AniMACCS version 1.3. Supporting information is provided in the appendices, such as guidance on required input files using both WinMACCS and running MACCS from the command line. This page left blank

More Details

Shear Behavior of Artificial Clay Seams within Bedded Salt Structures

Sobolik, Steven; Keffeler, Evan; Buchholz, Stuart

Bedded salt contains thin layers of clay, also known as clay seams, in-between far thicker layers of salt. These inhomogeneities are thought to have first-order effects on the closure of nearby drifts and potential roof collapses. Despite their importance, characterizations of the peak shear strength and residual shear strength of clay seams in salt are extremely rare in the published literature. A previous paper reported results from laboratory direct shear experiments on clay seam samples from the Permian Basin in New Mexico. These clay seams behaved similar to intact salt, which was attributed to the abundance of salt crystals intersecting the clay seams. None of those specimens contained a distinct ¼" - ½" (6 -12 mm) thick clay seam, as has been observed in drifts at the Waste Isolation Pilot Plant (WIPP). Due to the difficulty in obtaining WIPP samples with these types of clay seams, artificial seams of bentonite and brine sandwiched between sections of salt were created and shear tested. Eight 4" diameter samples were created with either a ¼" or ½" a thick seam and then consolidated at 3000 psi prior to shear testing. The direct shear tests on these samples were performed at nominal normal stresses representative of expected WIPP in-situ conditions (500 to 1500 psi). The resulting shear stress vs. shear displacement curves exhibited a peak followed by a gradual decay of shear strength. The shear stress never transitioned to a true residual shear stress plateau, so the final shear strength at the end of each test (0.75" of shear displacement) was analyzed instead. Both the peak shear strength and the final shear strength conformed to Mohr- Coulomb behavior with friction angles and cohesion strengths consistent with a saturated, highly consolidated, clay. These new artificial clay seam results and the previous clay-interspersed-with-salt results likely bound the expected shear behavior of WIPP clay seams.

More Details

Performance and wake flow characterization of a 1:8.7-scale reference USDOE MHKF1 hydrokinetic turbine to establish a verification and validation test database

Renewable Energy

Fontaine, A.A.; Straka, W.A.; Meyer, R.S.; Jonson, M.L.; Young, S.D.; Neary, Vincent S.

As hydrokinetic turbine technologies continue to advance towards commercialization, public datasets on the performance characteristics for these devices and their flow field effects are invaluable to advance our understanding of these technologies and to validate analytical and numerical models. The Applied Research Laboratory at The Pennsylvania State University (ARL Penn State) collaborated with Sandia National Laboratories and the University of California at Davis to design, fabricate (at a 1:8.7 scale), and experimentally test a novel hydrokinetic turbine rotor design to provide an open platform and dataset for further study and development. The water tunnel test of this three-bladed, horizontal-axis rotor recorded power production, blade loading, the near-wake flow, cavitation effects, and noise generation. These state-of-the-art measurements demonstrate much of the complex physics associated with the flow through an unducted, horizontal-axis turbine, and they elucidate the performance characteristics and flow field effects at an unprecedented fidelity, accuracy and resolution. Measurements of power coefficients (power, torque and thrust) as a function of tip-speed-ratio were performed. The dataset also includes unsteady measurements of driveshaft loading, blade strain, tower pressures, and radiated noise. Detailed flow mapping using laser Doppler velocimetry, and planar and stereo particle image velocimetry includes measurements of mean velocity and Reynolds stresses. Although the wake measurements are limited to less than half a diameter, they reveal the complex flow patterns in the near-wake structure of the rotor. The full database, available at the United States Department of Energy's marine and hydrokinetic data repository, includes tunnel and model Computer Aided Design geometry files and inflow data sufficient for a “Model-the-Test” computational Verification and Validation study.

More Details

Electrically Detected Magnetic Resonance Study of High-Field Stress Induced Si/SiO2Interface Defects

IEEE International Integrated Reliability Workshop Final Report

Moxim, Stephen J.; Lenahan, Patrick M.; Sharov, Fedor V.; Haase, Gaddi S.; Hughart, David R.

We report electrically detected magnetic resonance (EDMR) results in metal-oxidesemiconductor field effect transistors before and after high field gate stressing. The measurements utilize EDMR detected through interface recombination currents. These interface recombination measurements provide information about one aspect of the stressing damage: The chemical and physical identity of trapping centers generated at and very near the interface. EDMR signal demonstrates that interface defects known as centers play important roles in the stress-induced damage.

More Details

A lithium-sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions

Nano Energy

Wang, Hui; Shao, Yuyan; Pan, Huilin; Feng, Xuefei; Chen, Ying; Liu, Yi S.; Walter, Eric D.; Engelhard, Mark H.; Han, Kee S.; Deng, Tao; Ren, Guoxi; Lu, Dongping; Lu, Xiaochuan; Xu, Wu; Wang, Chunsheng; Feng, Jun; Mueller, Karl T.; Guo, Jinghua; Zavadil, Kevin R.; Zhang, Ji G.

Lithium-sulfur (Li–S) battery is one of the most promising candidates for the next generation energy storage systems. However, several barriers, including polysulfide shuttle effect, the slow solid-solid surface reaction pathway in the lower discharge plateau, and corrosion of Li anode still limit its practical applications, especially under the lean electrolyte condition required for high energy density. Here, we propose a solution-mediated sulfur reduction pathway to improve the capacity and reversibility of the sulfur cathode. With this method, a high coulombic efficiency (99%) and stable cycle life over 100 cycles were achieved under application-relevant conditions (S loading: 6.2 mg cm−2; electrolyte to sulfur ratio: 3 mLE gs−1; sulfur weight ratio: 72 wt%). This result is enabled by a specially designed Li2S4-rich electrolyte, in which Li2S is formed through a chemical disproportionation reaction instead of electrochemical routes. A single diglyme solvent was used to obtain electrolytes with the optimum range of Li2S4 concentration. Operando X-ray absorption spectroscopy confirms the solution pathway in a practical Li–S cell. This solution pathway not only introduces a new electrolyte regime for practical Li–S batteries, but also provides a new perspective for bypassing the inefficient surface pathway for other electrochemical processes.

More Details

Spectroradiometric detection of competitor diatoms and the grazer Poteriochromonas in algal cultures

Algal Research

Reichardt, Thomas A.; Maes, Danae; Jensen, Travis J.; Dempster, Thomas A.; Mcgowen, John A.; Poorey, Kunal; Curtis, Deanna J.; Lane, Todd; Timlin, Jerilyn A.

To address challenges in early detection of pond pests, we have extended a spectroradiometric monitoring method, initially demonstrated for measurement of pigment optical activity and biomass, to the detection of algal competitors and grazers. The method relies upon measurement and interpretation of pond reflectance spectra spanning from the visible into the near-infrared. Reflectance spectra are acquired every 5 min with a multi-channel, fiber-coupled spectroradiometer, providing monitoring of algal pond conditions with high temporal frequency. The spectra are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed in terms of the absorption and backscatter coefficients of the cultured species, with additional terms accounting for the pigment fluorescence features and for the water-surface reflection of sunlight and skylight. With this method we demonstrate detection of diatoms and the predator Poteriochromonas in outdoor cultures of Nannochloropsis oceanica and Chlorella vulgaris, respectively. The relative strength of these signatures is compared to microscopy and sequencing analysis. Spectroradiometric detection of diatoms is then further assessed on beaker-contained mixtures of Microchloropsis salina with Phaeodactylum tricornutum, Thalassiosira weissflogii, and Thalassiosira pseudonana, respectively, providing an initial evaluation of the sensitivity and specificity of detecting pond competitors.

More Details

Scientific Visualization: New Techniques in Production Software

SIAM News

Moreland, Kenneth D.; Childs, Hank

The field of visualization encompasses a wide range of techniques, from infographics to isosurfaces. An important subfield called "scientific visualization" is specifically dedicated to data sets with spatial components, i.e., (X, Y, Z) locations. Furthermore, this subfield's name is inspired by the fact that the data in question often come from the sciences, i.e., physics simulations or sensor networks.

More Details

RDX solubility in TNT at high temperatures

Journal of Thermal Analysis and Calorimetry

Hobbs, Michael L.; Kaneshige, Michael; Todd, Steven N.; Krawietz, Thomas R.

The solubility of RDX (hexahydro-1,3,5-tri-nitro-1,3,5-triazine) in TNT (2,4,6-trinitrotoluene) at elevated temperatures is required to accurately predict the response of Comp-B3 (60:40 RDX:TNT) during accidents involving fire. As the temperature increases, the TNT component melts, the RDX partially dissolves in the liquid TNT, and the remaining RDX melts (203 ∘C) as the Comp-B thermally ignites. In the current work, we used a differential scanning calorimeter (DSC) to estimate the solubility of RDX in TNT at the melting point of RDX. Most DSC measurements of Comp-B3 do not show an RDX melt endotherm. The absence of an endotherm associated with the RDX melt has been interpreted as RDX being completely dissolved in TNT before reaching the melting point. We have observed that the endotherm is not absent, but is masked by exothermic reactions occurring at these elevated temperatures. We have inhibited the exothermic reactions by venting our DSC samples and measuring the RDX melt endotherm in our Comp-B3 samples at about 203 ∘C. Using the measured heat flow associated with the RDX melt and the latent melting enthalpy of RDX, we have approximated the solubility of RDX in TNT to be roughly 50–100 g RDX per 100 g TNT. The broad range is based on corrections for exothermic reactions occurring as the RDX melts.

More Details

When do hydrocarbons dewet metal surfaces? The case of coronene on Cu(111)

Surface Science

Wang, Chen S.; Thurmer, Konrad; Skeen, Scott; Bartelt, Norman C.

We have used scanning tunneling microscopy and density functional theory calculations to study molecular layers of coronene on Cu(111). The structure and stability of these layers is determined by the balance between coronene-substrate and coronene-coronene interactions. Here, we characterize this balance by measuring the maximum coverage before coronene dewets the substrate to form three-dimensional islands. We find that coronene molecules lie parallel to the substrate at the maximum coverage, in contrast to previous observations of tilted coronene on metal surfaces. We attribute this previously reported tilt to a metastability caused by an activation barrier to nucleate three-dimensional islands.

More Details

Dynamic Tensile Characterization of Thin-Sheet Brittle Metallic Materials

Experimental Techniques

Sanborn, Brett; Hudspeth, M.; Song, Bo

Refractory metals are favorable materials in applications where high strength and ductility are needed at elevated temperatures. In some cases, operating temperatures may be near the melting point of the material. However, as temperature drops, refractory metals typically undergo a significant mechanical response change - ductile-to-brittle transition. These materials may be subjected to high strain rate loading at an ambient temperature state, such as an impact or crash. Knowledge of the high rate material properties are essential for design as well as simulation of impact events. The high rate stress-strain behavior of brittle metallic materials at ambient temperature is rarely studied because of experimental challenges, particularly when failure is involved. Failure typically occurs within the non-gage section of the material, which invalidates any collected stress-strain information. In this study, a method to determine a specimen geometry which will produce failures in the gage section is presented. Pure tungsten in thin-sheet form was used as a trial material to select a specimen geometry for high rate Kolsky tension bar experiments. A finite element simulation was conducted to derive a strain correction for more accurate results. The room temperature stress-strain behavior of pure tungsten at a strain rate of 24 s−1 is presented. The outcome of this experimental technique can be applied to other brittle materials for dynamic tensile characterization.

More Details

Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation

Computer Methods in Applied Mechanics and Engineering

Leng, Yu; Tian, Xiaochuan; Trask, Nathaniel A.; Foster, John T.

In this work, we study reproducing kernel (RK) collocation method for peridynamic Navier equation. In the first part, we apply a linear RK approximation to both displacement and dilatation, and then back-substitute dilatation and solve the peridynamic Navier equation in a pure displacement form. The RK collocation scheme converges to the nonlocal limit for a fixed nonlocal interaction length and also to the local limit as nonlocal interactions vanish. The stability is shown by comparing the collocation scheme with the standard Galerkin scheme using Fourier analysis. In the second part, we apply the RK collocation to the quasi-discrete peridynamic Navier equation and show its convergence to the correct local limit when the ratio between the nonlocal length scale and the discretization parameter is fixed. The analysis is carried out on a special family of rectilinear Cartesian grids for the RK collocation method with a designated kernel with finite support. We assume the Lamé parameters satisfy λ≥μ to avoid extra assumptions on the nonlocal kernel. Finally, numerical experiments are conducted to validate the theoretical results.

More Details

Coulombic friction in metamaterials to dissipate mechanical energy

Extreme Mechanics Letters

Garland, Anthony; Adstedt, Katarina M.; Casias, Adrian L.; Foulk, James W.; White, Benjamin C.; Mook, William M.; Kaehr, Bryan J.; Jared, Bradley H.; Lester, Brian T.; Leathe, Nicholas S.; Schwaller, Eric; Boyce, Brad L.

Product designs from a wide range of industries such as aerospace, automotive, biomedical, and others can benefit from new metamaterials for mechanical energy dissipation. In this study, we explore a novel new class of metamaterials with unit cells that absorb energy via sliding Coulombic friction. Remarkably, even materials such as metals and ceramics, which typically have no intrinsic reversible energy dissipation, can be architected to provide dissipation akin to elastomers. The concept is demonstrated at different scales (centimeter to micrometer), with different materials (metal and polymer), and in different operating environments (high and low temperatures), all showing substantial dissipative improvements over conventional non-contacting lattice unit cells. Further, as with other ‘programmable’ metamaterials, the degree of Coulombic absorption can be tailored for a given application. An analytic expression is derived to allow rapid first-order optimization. This new class of Coulombic friction energy absorbers can apply broadly to many industrial sectors such as transportation (e.g. monolithic shock absorbers), biomedical (e.g. prosthetics), athletic equipment (e.g. skis, bicycles, etc.), defense (e.g. vibration tolerant structures), and energy (e.g. survivable electrical grid components).

More Details

Helium diffusion and bubble evolution in tungsten nanotendrils

Computational Materials Science

Cusentino, Mary A.; Wirth, B.D.

We describe molecular dynamics simulations of helium implantation in geometries resembling tungsten nanotendrils observed in helium plasma exposure experiments. Helium atoms self-cluster and nucleate bubbles within the tendrillike geometries. However, helium retention in these geometries is lower than planar surfaces due to higher surface area to volume ratio which allows for continual bubble expansion and non-destructive release of helium atoms from the nanotendril. Limited diffusion of helium atoms deeper into the tendril was observed, and diffusion was enhanced with pre-existing, subsurface helium bubbles. Diffusion coefficients on the order of 10−12–10−11 m2s-1 were calculated. This suggests that while helium diffusion is low, it is still feasible that helium can diffuse to the base of a nanotendril to continue to drive fuzz growth.

More Details

bifiPV2020 Bifacial Workshop: A Technology Overview

Urrejola, Elias; Valencia, Felipe; Deline, Chris; Pelaez, Silvana A.; Meydbray, Jenya; Clifford, Tori; Kopecek, Radovan; Stein, Joshua

The virtual bifiPV Workshop was held in July 2020 to provide the solar industry with a forum for sharing and discussing research into bifacial photovoltaic (PV) technology. This report outlines major insights from the workshop to give the reader an overview of the latest developments in bifacial PV technology worldwide, from the lab to the field. Citations are drawn from this workshop unless otherwise noted, with all proceedings available online at bifipvworkshop. com. Presentations for the bifiPV2020 Workshop focused on the following areas: bifacial power plant modeling and simulation, albedo improvements, the development of encapsulants, the durability and reliability of current bifacial technologies, performance comparisons between glass-glass and glass-transparent backsheet configurations, the future of passivated emitter and rear contact (PERC) solar cells, and the growing adoption of n-type solar cells. With 650 GW total PV installed worldwide and 1 TW to come very soon, PERC is now the standard PV cell type produced en masse. However, it is already reaching 23% efficiency, the upper limit for this type of technology. PV modules breaking the 0.5-kW barrier are starting to appear, and the costs of standard PERC technology are already below 0.2 USD/Wp. In 2019, five GW of bifacial PV were installed worldwide. In 2020, the majority of bifacial installations are expected to be located in the United States, China, and Middle East and North Africa (MENA) states. N-type bifacial technologies are becoming increasingly viable and have huge potential to dominate the market in the coming years. With bifacial technology mounted on horizontal single-axis trackers (HSAT), bids below 10 USD/MWh will soon be observed in the MENA region, and later in Chile and the United States. Factory audits and reliability testing can reduce field failures by helping buyers to select producers that follow rigorous quality assurance and quality control processes.

More Details
Results 15101–15200 of 99,299
Results 15101–15200 of 99,299