Publications

7 Results

Search results

Jump to search filters

Supercritical CO2 sterilization of N95 Masks

Koplow, Jeffrey P.; Smith, Kent S.; Jouravel, Natalia J.; Buffleben, George M.; Sinha, Anupama S.; Negrete, Oscar N.; Barnett, T.; Karnesky, Richard A.

A preliminary investigation of the use of supercritical carbon dioxide for treating of 3M 1860 N95 masks was undertaken to evaluate a potential route to low-cost, scalable, sterilization of personal protective equipment for multiple reuse in hospital settings. Upon entering the supercritical regime, the normally distinct liquid and gaseous phases of CO2 merge into a single homogeneous phase that has density, short-range order, and solvation capacity of a liquid, but the volume-filling and permeation properties that of a gas. This enables supercritical CO2 to function as a vehicle for delivery of biocidal agents such peracetic acid into microporous structures. The potentially adverse effect of a liquid-to-gas phase transition on mask filter media is avoided by conducting cleaning operations above 31 C, the critical temperature for carbon dioxide. A sample of fifteen 3M 1860 N95 masks was subjected to ten consecutive cycles of supercritical CO2 cleaning to determine its effect on mask performance. These 15 masks, along with 5 control samples then underwent a battery of standardized tests at the CDC NIOSH NPPTL research facility in Pittsburgh, PA. The data from these tests strongly suggest (but do not prove) that supercritical carbon dioxide do not damage 3M 1860 N95 masks. Additional tests conducted during this project confirmed the compatibility of supercritical CO2 with ventilator tubing that, like N95 masks, has been in short supply during portions of the COVID-19 pandemic and cannot be sterilized by conventional means. Finally, a control experiment was also conducted to examine the effect of supercritical CO2 on a BSL-2 surrogate virus, vesicular stomatitis virus (VSV), Indiana serotype strain. In the absence of biocidal additives, supercritical CO2 exhibited no measurable lethality against VSV. This surrogate virus experiment suggests that a biocidal additive such as peracetic acid will be necessary to achieve required sterilization metrics.

More Details

Sandia's Research in Support of COVID-19 Pandemic Response: Materials Science

Rossman, Grant A.; Avina, Isaac C.; Steinfeldt, Bradley A.; Koplow, Jeffrey P.; Smith, Kent S.; Jouravel, Natalia J.; Buffleben, George M.; Sinha, Anupama S.; Negrete, Oscar N.; Barnett, T.; Karnesky, Richard A.; Melia, Michael A.; Taylor, Jason M.; Sorensen, Neil R.; Ackermann, Mark R.; Bachand, George D.; Harmon, Brooke N.; Jones, Brad H.; Miller, Philip R.; James, Anthony R.; Stefan, Maxwell S.; Burton, Patrick D.; Tezak, Matt; Corbin, William C.; Ricken, James B.; Atencio, Lauren; Cahill, Jesse L.; Martinez-Sanchez, Andres M.; Grillet, Anne M.; Dickens, Sara D.; Martin, Ahadi-Yusuf; Tucker, Mark; Hermina, Wahid L.; Laros, James H.

Sandia Materials Science Investment Area contributed to the SARS-CoV-2 virus and COVID-19 disease which represent the most significant pandemic threat in over 100 years. We completed a series of 7, short duration projects to provide innovative materials science research and development in analytical techniques to aid the neutralization of COVID-19 on multiple surfaces, approaches to rapidly decontaminate personal protective equipment, and pareto assessment of construction materials for manufacturing personal protective equipment. The developed capabilities and processes through this research can help US medical personnel, government installations and assets, first responders, state and local governments, and multiple federal agencies address the COVID-19 Pandemic.

More Details
7 Results
7 Results