Publications

Results 1–100 of 158

Search results

Jump to search filters

AlGaN High Electron Mobility Transistor for High-Temperature Logic

Journal of Microelectronics and Electronic Packaging

Klein, Brianna A.; Allerman, A.A.; Baca, A.G.; Nordquist, Christopher N.; Armstrong, Andrew A.; Van Heukelom, Michael V.; Rice, Anthony R.; Patel, Victor J.; Rosprim, Mary R.; Caravello, Lisa N.; Laros, James H.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert K.

Here we report on AlGaN high electron mobility transistor (HEMT)-based logic development, using combined enhancement- and depletion-mode transistors to fabricate inverters with operation from room temperature up to 500°C. Our development approach included: (a) characterizing temperature-dependent carrier transport for different AlGaN HEMT heterostructures, (b) developing a suitable gate metal scheme for use in high temperatures, and (c) over-temperature testing of discrete devices and inverters. Hall mobility data (from 30°C to 500°C) revealed the reference GaN-channel HEMT experienced a 6.9x reduction in mobility, whereas the AlGaN channel HEMTs experienced about a 3.1x reduction. Furthermore, a greater aluminum contrast between the barrier and channel enabled higher carrier densities in the two-dimensional electron gas for all temperatures. The combination of reduced variation in mobility with temperature and high sheet carrier concentration showed that an Al-rich AlGaN-channel HEMT with a high barrier-to-channel aluminum contrast is the best option for an extreme temperature HEMT design. Three gate metal stacks were selected for low resistivity, high melting point, low thermal expansion coefficient, and high expected barrier height. The impact of thermal cycling was examined through electrical characterization of samples measured before and after rapid thermal anneal. The 200-nm tungsten gate metallization was the top performer with minimal reduction in drain current, a slightly positive threshold voltage shift, and about an order of magnitude advantage over the other gates in on-to-off current ratio. After incorporating the tungsten gate metal stack in device fabrication, characterization of transistors and inverters from room temperature up to 500°C was performed. The enhancement-mode (e-mode) devices’ resistance started increasing at about 200°C, resulting in drain current degradation. This phenomenon was not observed in depletion-mode (d-mode) devices but highlights a challenge for inverters in an e-mode driver and d-mode load configuration.

More Details

AlGaN High Electron Mobility Transistor for High Temperature Logic

Advancing Microelectronics

Klein, Brianna A.; Allerman, A.A.; Baca, A.G.; Nordquist, Christopher N.; Armstrong, Andrew A.; Van Heukelom, Michael V.; Rice, Anthony R.; Patel, Victor J.; Rosprim, Mary R.; Caravello, Lisa N.; Laros, James H.; Pipkin, Jennifer R.; Abate, Christopher; Kaplar, Robert K.

We report on AlGaN HEMT-based logic development, using combined enhancement- and depletion-mode transistors to fabricate inverters with operation from room temperature up to 500°C. Our development approach included: (a) characterizing temperature dependent carrier transport for different AlGaN HEMT heterostructures, (b) developing a suitable gate metal scheme for use in high temperatures, and (c) over-temperature testing of discrete devices and inverters. Hall mobility data revealed the GaN-channel HEMT experienced a 6.9× reduction in mobility, whereas the AlGaN channel HEMTs experienced about a 3.1x reduction. Furthermore, a greater aluminum contrast between the barrier and channel enabled higher carrier densities in the two-dimensional electron gas for all temperatures. The combination of reduced variation in mobility with temperature and high sheet carrier concentration showed that an Al-rich AlGaN-channel HEMT with a high barrier-to-channel aluminum contrast is the best option for an extreme temperature HEMT design. Three gate metal stacks were selected for low resistivity, high melting point, low thermal expansion coefficient, and high expected barrier height. The impact of thermal cycling was examined through electrical characterization of samples measured before and after rapid thermal anneal. The 200 nm tungsten gate metallization was the top performer with minimal reduction in drain current, a slightly positive threshold voltage shift, and about an order of magnitude advantage over the other gates in on-to-off current ratio. After incorporating the tungsten gate metal stack in device fabrication, characterization of transistors and inverters from room temperature up to 500°C was performed. The enhancement-mode (e-mode) devices’ resistance started increasing at about 200°C, resulting in drain current degradation. This phenomenon was not observed in depletion-mode (d-mode) devices but highlights a challenge for inverters in an e-mode driver and d-mode load configuration.

More Details

Germanium Telluride Chalcogenide Switches for RF Applications

Hummel, Gwendolyn H.; Patrizi, G.A.; Young, Andrew I.; Schroeder, Katlin S.; Ruyack, Alexander R.; Schiess, Adrian R.; Finnegan, Patrick S.; Adams, David P.; Nordquist, Christopher N.

This project developed prototype germanium telluride switches, which can be used in RF applications to improve SWAP (size, weight, and power) and signal quality in RF systems. These switches can allow for highly reconfigurable systems, including antennas, communications, optical systems, phased arrays, and synthetic aperture radar, which all have high impact on current National Security goals for improved communication systems and communication technology supremacy. The final result of the project was the demonstration of germanium telluride RF switches, which could act as critical elements necessary for a single chip RF communication system that will demonstrate low SWAP and high reconfigurability

More Details

Hybrid MEMS-CMOS ion traps for NISQ computing

Quantum Science and Technology

Blain, Matthew G.; Haltli, Raymond A.; Maunz, P.; Nordquist, Christopher N.; Revelle, Melissa R.; Stick, Daniel L.

Surging interest in engineering quantum computers has stimulated significant and focused research on technologies needed to make them manufacturable and scalable. In the ion trap realm this has led to a transition from bulk three-dimensional macro-scale traps to chip-based ion traps and included important demonstrations of passive and active electronics, waveguides, detectors, and other integrated components. At the same time as these technologies are being developed the system sizes are demanding more ions to run noisy intermediate scale quantum (NISQ) algorithms, growing from around ten ions today to potentially a hundred or more in the near future. To realize the size and features needed for this growth, the geometric and material design space of microfabricated ion traps must expand. In this paper we describe present limitations and the approaches needed to overcome them, including how geometric complexity drives the number of metal levels, why routing congestion affects the size and location of shunting capacitors, and how RF power dissipation can limit the size of the trap array. We also give recommendations for future research needed to accommodate the demands of NISQ scale ion traps that are integrated with additional technologies.

More Details

AlGaN High Electron Mobility Transistor for Power Switches and High Temperature Logic

Klein, Brianna A.; Armstrong, Andrew A.; Allerman, A.A.; Nordquist, Christopher N.; Neely, Jason C.; Reza, Shahed R.; Douglas, Erica A.; Van Heukelom, Michael V.; Rice, Anthony R.; Patel, Victor J.; Matins, Benjamin M.; Fortune, Torben R.; Rosprim, Mary R.; Caravello, Lisa N.; Laros, James H.; Pipkin, Jennifer R.; Abate, Vincent M.; Kaplar, Robert K.

Abstract not provided.

On-Wafer Microfabricated Test Structures for Characterizing RF Breakdown in Narrow Gaps

Proceedings of the 2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems: Making Waves in Texas, WMCS 2021

Ruyack, Alexander R.; Jordan, Matthew J.; Moore, Christopher M.; Hummel, Gwendolyn H.; Herrera, Sergio A.; Ballance, Mark H.; Bingham, Andrew J.; Schiess, Adrian R.; Gibson, Christopher B.; Nordquist, Christopher N.

Plasmas formed in microscale gaps at DC and plasmas formed at radiofrequency (RF) both deviate in behavior compared to the classical Paschen curve, requiring lower voltage to achieve breakdown due to unique processes and dynamics, such as field emission and controlled rates of electron/ion interactions. Both regimes have been investigated independently, using high precision electrode positioning systems for microscale gaps or large, bulky emitters for RF. However, no comprehensive study of the synergistic phenomenon between the two exists. The behavior in such a combined system has the potential to reach sub-10 V breakdown, which combined with the unique electrical properties of microscale plasmas could enable a new class of RF switches, limiters and tuners.This work describes the design and fabrication of novel on-wafer microplasma devices with gaps as small as 100 nm to be operated at GHz frequencies. We used a dual-sacrificial layer process to create devices with microplasma gaps integrated into RF compatible 50 Ω coplanar waveguide transmission lines, which will allow this coupled behaviour to be studied for the first time. These devices are modelled using conventional RF simulations as well as the Sandia code, EMPIRE, which is capable of modelling the breakdown and formation of plasma in microscale gaps driven by high frequencies. Synchronous evaluation of the modelled electrical and breakdown behaviour is used to define device structures, predict behaviour and corroborate results. We further report preliminary independent testing of the microscale gap and RF behaviour. DC testing shows modified-Paschen curve behaviour for plasma gaps at and below four microns, demonstrating decreased breakdown voltage with reduced gap size. Additionally, preliminary S-parameter measurements of as-prepared and connectorized devices have elucidated RF device behaviour. Together, these results provide baseline data that enables future experiments as well as discussion of projected performance and applications for these unique devices.

More Details

Compact, Pull-in-Free Electrostatic MEMS Actuated Tunable Ring Resonator for Optical Multiplexing

Optics InfoBase Conference Papers

Ruyack, Alexander R.; Grine, Alejandro J.; Finnegan, Patrick S.; Serkland, Darwin K.; Robinson, Samuel; Weatherred, Scott E.; Frost, Megan D.; Nordquist, Christopher N.; Wood, Michael G.

We present an optical wavelength division multiplexer enabled by a ring resonator tuned by MEMS electrostatic actuation. Analytical analysis, simulation and fabrication are discussed leading to results showing controlled tuning greater than one FSR.

More Details

Compact, Pull-in-Free Electrostatic MEMS Actuated Tunable Ring Resonator for Optical Multiplexing

Optics InfoBase Conference Papers

Ruyack, Alexander R.; Grine, Alejandro J.; Finnegan, Patrick S.; Serkland, Darwin K.; Robinson, Samuel; Weatherred, Scott E.; Frost, Megan D.; Nordquist, Christopher N.; Wood, Michael G.

We present an optical wavelength division multiplexer enabled by a ring resonator tuned by MEMS electrostatic actuation. Analytical analysis, simulation and fabrication are discussed leading to results showing controlled tuning greater than one FSR.

More Details

Heterogeneous Integration of Silicon Electronics and Compound Semiconductor Optoelectronics for Miniature RF Photonic Transceivers

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Laros, James H.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; Dallo, Henry J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher J.; Serkland, Darwin K.; Dean, Kenneth A.

Abstract not provided.

Heterogeneous integration of silicon electronics and compound semiconductor optoelectronics for miniature rf photonic transceivers

ECS Transactions

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Laros, James H.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher M.; Serkland, Darwin K.; Dean, Kenneth A.

Heterogeneous Integration (HI) may enable optoelectronic transceivers for short-range and long-range radio frequency (RF) photonic interconnect using wavelength-division multiplexing (WDM) to aggregate signals, provide galvanic isolation, and reduce crosstalk and interference. Integration of silicon Complementary Metal-Oxide-Semiconductor (CMOS) electronics with InGaAsP compound semiconductor photonics provides the potential for high-performance microsystems that combine complex electronic functions with optoelectronic capabilities from rich bandgap engineering opportunities, and intimate integration allows short interconnects for lower power and latency. The dominant pure-play foundry model plus the differences in materials and processes between these technologies dictate separate fabrication of the devices followed by integration of individual die, presenting unique challenges in die preparation, metallization, and bumping, especially as interconnect densities increase. In this paper, we describe progress towards realizing an S-band WDM RF photonic link combining 180 nm silicon CMOS electronics with InGaAsP integrated optoelectronics, using HI processes and approaches that scale into microwave and millimeter-wave frequencies.

More Details

Device-level thermal management of gallium oxide field-effect transistors

IEEE Transactions on Components, Packaging and Manufacturing Technology

Chatterjee, Bikramjit; Zeng, Ke; Nordquist, Christopher N.; Singisetti, Uttam; Choi, Sukwon

The ultrawide bandgap (UWBG) (4.8 eV) and melt-grown substrate availability of β-Ga2O3 give promise to the development of next-generation power electronic devices with dramatically improved size, weight, power, and efficiency over current state-of-the-art WBG devices based on 4H-SiC and GaN. Also, with recent advancements made in gigahertz frequency radio frequency (RF) applications, the potential for monolithic or heterogenous integration of RF and power switches has attracted researchers' attention. However, it is expected that Ga2O3 devices will suffer from self-heating due to the poor thermal conductivity of the material. Thermoreflectance thermal imaging and infrared thermography were used to understand the thermal characteristics of a MOSFET fabricated via homoepitaxy. A 3-D coupled electrothermal model was constructed based on the electrical and thermal characterization results. The device model shows that a homoepitaxial device suffers from an unacceptable junction temperature rise of 1500 °C under a targeted power density of 10 W/mm, indicating the importance of employing device-level thermal managements to individual Ga2O3 transistors. The effectiveness of various active and passive cooling solutions was tested to achieve a goal of reducing the device operating temperature below 200 °C at a power density of 10 W/mm. Results show that flip-chip heterointegration is a viable option to enhance both the steady-state and transient thermal characteristics of Ga2O3 devices without sacrificing the intrinsic advantage of high-quality native substrates. Also, it is not an active thermal management solution that entails peripherals requiring additional size and cost implications.

More Details

Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors

Journal of Electronic Materials

Klein, Brianna A.; Baca, A.G.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Wendt, J.R.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Abate, Vincent M.; Kaplar, Robert K.

Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.

More Details

RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm Gates

IEEE Electron Device Letters

Baca, A.G.; Klein, Brianna A.; Wendt, J.R.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert K.

Al-rich AlGaN-channel high electron mobility transistors with 80-nm long gates and 85% (70%) Al in the barrier (channel) were evaluated for RF performance. The dc characteristics include a maximum current of 160 mA/mm with a transconductance of 24 mS/mm, limited by source and drain contacts, and an on/off current ratio of 109. fT of 28.4 GHz and fMAX of 18.5 GHz were determined from small-signal S-parameter measurements. Output power density of 0.38 W/mm was realized at 3 GHz in a power sweep using on-wafer load pull techniques.

More Details

Power Handling of Vanadium Dioxide Metal-Insulator Transition RF Limiters

2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, IMWS-AMP 2018

Nordquist, Christopher N.; Leonhardt, Darin L.; Custer, Joyce O.; Jordan, Tyler S.; Wolfley, Steven L.; Scott, Sean M.; Sing, Molly N.; Cich, Michael J.; Rodenbeck, Christopher T.

Maximum power handling, spike leakage, and failure mechanisms have been characterized for limiters based on the thermally triggered metal-insulator transition of vanadium dioxide. These attributes are determined by properties of the metal-insulator material such as on/off resistance ratio, geometric properties that determine the film resistance and the currentcarrying capability of the device, and thermal properties such as heatsinking and thermal coupling. A limiter with greater than 10 GHz of bandwidth demonstrated 0.5 dB loss, 27 dBm threshold power, 8 Watts blocking power, and 0.4 mJ spike leakage at frequencies near 2 GHz. A separate limiter optimized for high power blocked over 60 Watts of incident power with leakage less than 25 dBm after triggering. The power handling demonstrates promise for these limiter devices, and device optimization presents opportunities for additional improvement in spike leakage, response speed, and reliability.

More Details

Investigation of a Solid-State Tuning Behavior in Lithium Niobate

2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, IMWS-AMP 2018

Branch, Darren W.; Nordquist, Christopher N.; Jensen, Daniel S.; Eichenfield, Matthew S.; Douglas, James K.; Siddiqui, Aleem M.; Friedmann, Thomas A.

Electric field-based frequency tuning of acoustic resonators at the material level provides an enabling technology for building complex tunable filters. Tunable acoustic resonators were fabricated in thin plates (h/λ ∼ 0.05) of X-cut lithium niobate (90°, 90°, ψ = 170°). Lithium niobate is known for its large electromechanical coupling (SH: K2 40%) and thus applicability for low-insertion loss and wideband filter applications. We demonstrate the effect of a DC bias to shift the resonant frequency by 0.4% by directly tuning the resonator material. The mechanism is based on the nonlinearities that exist in the piezoelectric properties of lithium niobate. Devices centered at 332 MHz achieved frequency tuning of 12 kHz/V through application of a DC bias.

More Details

An AlN/Al0.85Ga0.15N high electron mobility transistor with a regrown ohmic contact

Device Research Conference - Conference Digest, DRC

Baca, A.G.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Nordquist, Christopher N.; Fortune, Torben R.; Kaplar, Robert K.

The performance and efficiency of power devices depends on both high breakdown voltage and low on-state resistance. For semiconductor devices, the critical electric field (EC) affecting breakdown scales approximately as Eg25 [1], making the wide bandgap semiconductor materials logical candidates for high voltage power electronics devices. In particular, AlGaN alloys approaching AlN with its 6.2 eV bandgap have an estimated EC approaching 5x that of GaN. This factor makes AlN/AlGaN high election mobility transistors (HEMTs) extremely interesting as candidate power electronic devices. Until now, such devices have been hampered, ostensibly due to the difficulty of making Ohmic contacts to AlGaN alloys with high Al composition. With the use of an AlN barrier etch and regrowth procedure for Ohmic contact formation, we are now able to report on an AlN/AlGaN HEMT with 85% Al.

More Details

Inductive coupling for increased bandwidth of aluminum nitride contour-mode microresonator filters

IEEE MTT-S International Microwave Symposium Digest

Nordquist, Christopher N.; Henry, Michael D.; Nguyen, Janet H.; Clews, Peggy; Lepkowski, Stefan M.; Grine, Alejandro J.; Dyck, Christopher D.; Olsson, Roy H.

Inductive coupling and matching networks are used to increase the bandwidth of filters realized with aluminum nitride contour-mode resonators. Filter bandwidth has been doubled using a wirebonded combination of a wafer-level-packaged resonator chip and a high-Q integrated inductor chip. The three-pole filters have a center frequency near 500 MHz, an area of 9 mm × 9 mm, insertion loss of < 5 dB for a bandwidth of 0.4%, and a resonator unloaded Q of 1600.

More Details

Next Generation Photovoltaic Technologies For High-Performance Remote Power Generation (Final Report)

Lentine, Anthony L.; Nielson, Greg N.; Riley, Daniel R.; Okandan, M.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Kim, B.; Kratochvil, Jay; Anderson, B.J.; Cruz-Campa, J.L.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, J.G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher N.; Saavedra, Michael P.; Ballance, Mark H.; Nguyen, J.; Alford, Charles A.; Nelson, John S.; Lavin, Judith M.; Clews, P.; Pluym, Tammy P.; Wierer, J.; Wang, George T.; Biefeld, Robert M.; Luk, Ting S.; Brener, Igal B.; Granata, J.; Aguirre, Brandon A.; Haney, Mike; Agrawal, Gautam; Gu, Tian

A unique, micro-scale architecture is proposed to create a novel hybrid concentrated photovoltaic system. Micro-scale (sub-millimeter wide), multi-junction cells are attached to a large-area silicon cell backplane (several inches wide) that can optimally collect both direct and diffuse light. By using multi- junction III-V cells, we can get the highest possible efficiency of the direct light input. In addition, by collecting the diffuse light in the large-area silicon cell, we can produce power on cloudy days when the concentrating cells would have minimal output. Through the use of micro-scale cells and lenses, the overall assembly will provide higher efficiency than conventional concentrators and flat plates, while keeping the form factor of a flat plate module. This report describes the hybrid concept, the design of a prototype, including the PV cells and optics, and the experimental results.

More Details

Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs

IEEE Transactions on Components, Packaging and Manufacturing Technology

Choi, Sukwon; Peake, Gregory M.; Keeler, Gordon A.; Geib, K.M.; Briggs, R.D.; Laros, James H.; Shaffer, Ryan A.; Clevenger, Jascinda C.; Patrizi, G.A.; Klem, John F.; Tauke-Pedretti, Anna; Nordquist, Christopher N.

Flip-chip heterogeneously integrated n-p-n InGaP/GaAs heterojunction bipolar transistors (HBTs) with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after integration significantly aggravates self-heating effects, causing poor $I$-$V$ characteristics due to excessive device self-heating. An electrothermal codesign scheme is demonstrated that involves simulation (design), thermal characterization, fabrication, and evaluation. Thermoreflectance thermal imaging, electrical-temperature sensitive parameter-based thermometry, and infrared thermography were utilized to assess the junction temperature rise in HBTs under diverse configurations. In order to reduce the thermal resistance of integrated devices, passive cooling schemes assisted by structural modification, i.e., positioning indium bump heat sinks between the devices and the carrier, were employed. By implementing thermal heat sinks in close proximity to the active region of flip-chip integrated HBTs, the junction-to-baseplate thermal resistance was reduced over a factor of two, as revealed by junction temperature measurements and improvement of electrical performance. The suggested heterogeneous integration method accounts for not only electrical but also thermal requirements providing insight into realization of advanced and robust III-V/Si heterogeneously integrated electronics.

More Details

Micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Hollowell, Andrew E.; Lobser, Daniel L.; Nordquist, Christopher N.; Benito, Francisco M.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Resnick, Paul J.; Rembetski, John F.; Sterk, Jonathan D.; Stick, Daniel L.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.; Blain, Matthew G.; Scrymgeour, David S.

Abstract not provided.

Scalable micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Benito, Francisco M.; Berry, Christopher W.; Blain, Matthew G.; Haltli, Raymond A.; Clark, Craig R.; Clark, Susan M.; Heller, Edwin J.; Hollowell, Andrew E.; Mizrahi, Jonathan; Nordquist, Christopher N.; Resnick, Paul J.; Rembetski, John F.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.

Abstract not provided.

Radio Frequency Microelectromechanical Systems [Book Chapter Manuscript]

Nordquist, Christopher N.; Olsson, Roy H.

Radio frequency microelectromechanical system (RF MEMS) devices are microscale devices that achieve superior performance relative to other technologies by taking advantage of the accuracy, precision, materials, and miniaturization available through microfabrication. To do this, these devices use their mechanical and electrical properties to perform a specific RF electrical function such as switching, transmission, or filtering. RF MEMS has been a popular area of research since the early 1990s, and within the last several years, the technology has matured sufficiently for commercialization and use in commercial market systems.

More Details

Band-selective interferer rejection for cognitive receiver protection

IEEE MTT-S International Microwave Symposium Digest

Scott, Sean M.; Nordquist, Christopher N.; Leonhardt, Darin L.; Jordan, Tyler S.; Rodenbeck, Christopher T.

The concept for a new, frequency-selective limiting filter is presented. This is accomplished by placing a phase change vanadium dioxide (VO2) film at the proper node of the filter. When the high-powered microwave signal reaches a certain threshold, the VO2 undergoes a phase transition from the monoclinic "insulator state" to the tetragonal "metallic state". This crystallographic change is accompanied by a 3 order of magnitude drop in the film's resistivity, and creates a short circuit at a section of the filter, changing a pole to a zero, and rejecting further undesirable high-powered signals from damaging sensitive receiver components. This paper details the design and simulation of the filter, along with measurement results from VO2 films and the filter element. This filter element begins rejecting at about 2 W input power, with isolation of over 16 dB to over 23 W input power, and is unaffected by an out-of band interferer of over 25 W. The architecture presented allows for filter banks capable of automatically-rejecting interferers, yet allowing signals of interest to pass. © 2013 IEEE.

More Details

Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

Highstrete, Clark H.; Sterk, Jonathan D.; Heller, Edwin J.; Maunz, Peter L.; Nordquist, Christopher N.; Stevens, James E.; Tigges, Chris P.; Blain, Matthew G.

Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

More Details

Flat plate concentrators with large acceptance angle enabled by micro cells and mini lenses: performance evaluation

Cruz-Campa, Jose L.; Anderson, Benjamin J.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher N.; Nielson, Gregory N.; Saavedra, Michael P.; Ballance, Mark H.; Nguyen, Janet N.; Alford, Charles A.; Riley, Daniel R.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Kratochvil, Jay A.

Abstract not provided.

Power handling and intermodulation distortion of contour-mode AlN MEMS resonators and filters

IEEE MTT-S International Microwave Symposium Digest

Nordquist, Christopher N.; Olsson, Roy H.

We report measurements of the power handling and intermodulation distortion of piezoelectric contour mode resonators and filters operating near 500 MHz. The output power capability scales as the inverse of the motional impedance squared, and the power handling of resonator filter circuits scales with the number of resonators combined in series and parallel. Also, the third-order intercept depends on the measurement tone spacing. Individual AlN resonators with 50 Ω motional impedance demonstrate output power capability of +10 dBm and OIP3 > +20 dBm, while an eight resonator filter demonstrates output power handling of +14 dBm and a OIP3 > +32 dBm. © 2011 IEEE.

More Details
Results 1–100 of 158
Results 1–100 of 158