Publications

Results 1–25 of 38
Skip to search filters

Pulsed- and DC-charged PCSS-based trigger generators

IEEE Transactions on Plasma Science

Glover, Steven F.; Zutavern, Fred J.; Swalby, Michael S.; Cich, Michael C.; Loubriel, Guillermo M.; Mar, Alan M.; White, Forest E.

Prior to this research, we have developed high-gain GaAs photoconductive semiconductor switches (PCSSs) to trigger 50-300 kV high-voltage switches (HVSs). We have demonstrated that PCSSs can trigger a variety of pulsed-power switches operating at 50300 kV by locating the trigger generator (TG) directly at the HVS. This was demonstrated for two types of dc-charged trigatrons and two types of field distortion midplane switches, including a ±100 kVDC switch produced by the High Current Electronics Institute used in the linear transformer driver. The lowest rms jitter obtained from triggering an HVS with a PCSS was 100 ps from a 300 kV pulse-charged trigatron. PCSSs are the key component in these independently timed fiber-optically controlled low jitter TGs for HVSs. TGs are critical subsystems for reliable and efficient pulsed-power facilities because they control the timing synchronization and amplitude variation of multiple pulse-forming lines that combine to produce the total system output. Future facility-scale pulsed-power systems are even more dependent on triggering, as they are composed of many more triggered HVSs, and they produce shaped pulses by independent timing of the HVSs. As pulsed-power systems become more complex, the complexity of the associated trigger systems also increases. One of the means to reduce this complexity is to allow the trigger system to be charged directly from the voltage appearing across the HVS. However, for slow or dc-charged pulsed-power systems, this can be particularly challenging as the dc hold-off of the PCSS dramatically declines. This paper presents results that are seeking to address HVS performance requirements over large operating ranges by triggering using a pulsed-charged PCSS-based TG. Switch operating conditions that are as low as 45% of the self-break were achieved. A dc-charged PCSS-based TG is also introduced and demonstrated over a 39-61 kV operating range. DC-charged PCSS allows the TG to be directly charged from slow or dc-charged pulsed-power systems. GaAs and neutron-irradiated GaAs (n-GaAs) PCSSs were used to investigate the dc-charged operation. © 2010 IEEE.

More Details

Novel detection methods for radiation-induced electron-hole pairs

Cich, Michael C.; Derzon, Mark S.; Martinez, Marino M.; Nordquist, Christopher N.; Vawter, Gregory A.

Most common ionizing radiation detectors typically rely on one of two general methods: collection of charge generated by the radiation, or collection of light produced by recombination of excited species. Substantial efforts have been made to improve the performance of materials used in these types of detectors, e.g. to raise the operating temperature, to improve the energy resolution, timing or tracking ability. However, regardless of the material used, all these detectors are limited in performance by statistical variation in the collection efficiency, for charge or photons. We examine three alternative schemes for detecting ionizing radiation that do not rely on traditional direct collection of the carriers or photons produced by the radiation. The first method detects refractive index changes in a resonator structure. The second looks at alternative means to sense the chemical changes caused by radiation on a scintillator-type material. The final method examines the possibilities of sensing the perturbation caused by radiation on the transmission of a RF transmission line structure. Aspects of the feasibility of each approach are examined and recommendations made for further work.

More Details

Measuring THz QCL feedback using an integrated monolithic transceiver

Wanke, Michael W.; Nordquist, Christopher N.; Cich, Michael C.; Fuller, Charles T.; Reno, J.L.

THz quantum cascade lasers are of interest for use as solid-state local-oscillators in THz heterodyne receiver systems, especially for frequencies exceeding 2 THz and for use with non-cryogenic mixers which require mW power levels. Among other criteria, to be a good local oscillator, the laser must have a narrow linewidth and excellent frequency stability. Recent phase locking measurements of THz QCLs to high harmonics of microwave frequency reference sources as high as 2.7 THz demonstrate that the linewidth and frequency stability of QCLs can be more than adequate. Most reported THz receivers employing QCLs have used discrete source and detector components coupled via mechanically aligned free-space quasioptics. Unfortunately, retroreflections of the laser off of the detecting element can lead to deleterious feedback effects. Using a monolithically integrated transceiver with a Schottky diode monolithically integrated into a THz QCL, we have begun to explore the sensitivity of the laser performance to feedback due to retroreflections of the THz laser radiation. The transceiver allows us to monitor the beat frequency between internal Fabry-Perot modes of the QCL or between a QCL mode and external radiation incident on the transceiver. When some of the power from a free running Fabry-Perot type QCL is retroreflected with quasi-static optics we observe frequency pulling, mode splitting and chaos. Given the lack of calibrated frequency sources with sufficient stability and power to phase lock a QCL above a couple THz, attempts have been made to lock the absolute laser frequency by locking the beat frequency of a multimoded laser. We have phase locked the beat frequency between Fabry-Perot modes to an {approx}13 GHz microwave reference source with a linewidth less than 1 Hz, but did not see any improvment in stability of the absolute frequency of the laser. In this case, when some laser power is retroreflected back into the laser, the absolute frequency can be pulled significantly as a function of the external path length.

More Details

THz transceiver characterization : LDRD project 139363 final report

Lee, Mark L.; Wanke, Michael W.; Nordquist, Christopher N.; Cich, Michael C.; Wendt, J.R.; Fuller, Charles T.; Reno, J.L.

LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

More Details

A spatial light modulator for terahertz beams

Proposed for publication in Nature Photonics.

Cich, Michael C.

We design and implement a multipixel spatial modulator for terahertz beams using active terahertz metamaterials. Our first-generation device consists of a 4 x 4 pixel array, where each pixel is an array of subwavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. Through terahertz transmission experiments, we show that the spatial modulator has a uniform modulation depth of around 40% across all pixels, and negligible crosstalk, at the resonant frequency. This device can operate under small voltage levels, at room temperature, with low power consumption and reasonably high switching speed.

More Details
Results 1–25 of 38
Results 1–25 of 38