Trends in Binding Phenomena of Small Organic Molecules and CW Simulants to Selected Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Components and Packaging Technologies
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers are of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the 24th Symposium on Fusion Engineering Conference - SOFE 2011
Abstract not provided.
International Journal of Impact Engineering
The intense magnetic field generated by the Z accelerator at Sandia National Laboratories is used as a pressure source for material science studies. A current of ∼20 MA can be delivered to the loads used in experiments on a time scale of ∼100-600 ns. Magnetic fields (pressures) exceeding 1200 T (600 GPa) have been produced in planar configurations. In one application we have developed, the magnetic pressure launches a flyer plate to ultra-high velocity in a plate impact experiment; equation of state data is obtained on the Hugoniot of a material that is shock compressed to multi-megabar pressure. This capability has been enhanced by the recent development of a planar stripline configuration that increases the magnetic pressure for a given current. Furthermore, the cross sectional area of a stripline flyer plate is larger than in previous coaxial loads; this improves the planarity of the flyer thereby reducing measurement uncertainty. Results of experiments and multi-dimensional magneto hydrodynamic (MHD) simulation are presented for ultra-high velocity aluminum and copper flyer plates. Aluminum flyer plates with dimensions ∼25 mm by ∼13 mm by ∼1 mm have been launched to velocities up to ∼45 km/s; for copper the peak velocity is ∼22 km/s. The significance of these results is that part of the flyer material remains solid at impact with the target; an accomplishment that is made possible by shaping the dynamic pressure (current) ramp so that the flyer compresses quasi-isentropically (i.e., shocklessly) during acceleration.
Computer Science - Research and Development
The usage and adoption of General Purpose GPUs (GPGPU) in HPC systems is increasing due to the unparalleled performance advantage of the GPUs and the ability to fulfill the ever-increasing demands for floating points operations. While the GPU can offload many of the application parallel computations, the system architecture of a GPU-CPU-InfiniBand server does require the CPU to initiate and manage memory transfers between remote GPUs via the high speed InfiniBand network. In this paper we introduce for the first time a new innovative technology - GPUDirect that enables Tesla GPUs to transfer data via InfiniBand without the involvement of the CPU or buffer copies, hence dramatically reducing the GPU communication time and increasing overall system performance and efficiency. We also explore for the first time the performance benefits of GPUDirect using Amber and LAMMPS applications. © Springer-Verlag 2011.
Computer Science - Research and Development
The rate of failures in HPC systems continues to increase as the number of components comprising the systems increases. System logs are one of the valuable information sources that can be used to analyze system failures and their root causes. However, system log files are usually too large and complex to analyze manually. There are some existing log clustering tools that seek to help analysts in exploring these logs, however they fail to satisfy our needs with respect to scalability, usability and quality of results. Thus, we have developed a log clustering tool to better address these needs. In this paper we present our novel approach and initial experimental results. © Springer-Verlag 2011.
Journal of Applied Physics
Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading. © 2011 American Institute of Physics.
Proceedings - Annual Reliability and Maintainability Symposium
Materiel availability (Am) is a new US Department of Defense Key Performance Parameter (KPP) implemented through a mandatory Sustainment Metric consisting of an Availability KPP and two supporting Key System Attributes (KSAs), materiel reliability and ownership cost. Sandia National Laboratories (Sandia), in conjunction with several US Army organizations, developed the analytical foundation, assumptions, and brigade-level modeling approach to support lifecycle, fleet-wide Am modeling and analysis of a complex Army weapon system. Like operational availability (Ao), Am is dependent on reliability, but Am is also affected by other factors that do not impact Ao. The largest influences on A m are technology insertion and reset downtimes. Am is a different metric from Ao. Whereas Ao is an operational measure, Am is more of a programmatic measure that spans a much larger timeframe, additional sources of downtime, and add itional sources of unscheduled maintenance. © 2011 IEEE.
Chemical Geology
This study reports the solubility constants of both synthetic and natural hydromagnesite (5424) determined in NaCl solutions with a wide range of ionic strength regarding the following reaction:. Mg5(CO3)4(OH)2.4H2O (cr)+10H+⇆5Mg2++4CO2(g)+10H2O(l)Solubility experiments were conducted from undersaturation in deionized water and 0.10-4.4m NaCl solutions at PCO2 of 10-3.4atm and 22.5°C, and lasting up to 1870days. Based on the specific interaction theory, the weighted average solubility constant at infinite dilution calculated from the experimental results in 0.10-3.2m NaCl solutions using the natural hydromagnesite (5424) from Staten Island, New York, is 58.39±0.40 (2σ) in logarithmic units at 22.5°C with a corresponding value of 57.93±0.40 (2σ) at 25°C. Similarly, the weighted average solubility constant using the natural hydromagnesite (5424) from Gabbs, Nevada, is 59.54±0.72 (2σ) in logarithmic units at 22.5°C with a corresponding value of 59.07±0.72 (2σ) at 25°C. The weighted average solubility constant of synthetic hydromagnesite (5424) determined from experiments in 0.10-4.4m NaCl solutions is 61.53±0.59 (2σ) in logarithmic units at 22.5°C with a corresponding value of 61.04±0.59 (2σ) at 25°C. The natural hydromagnesite has lower solubilities because of its higher crystallinity related to their origins than synthetic hydromagnesite. The solubility constant of synthetic hydromagnesite is about one order of magnitude lower than the literature values. The Gibbs free energies of formation at the reference state (25°C, 1bar) are -5896±2kJmol-1, -5889±4kJmol-1, and -5,878±3kJmol-1 for the natural hydromagnesite from Staten Island, New York, from Gabbs, Nevada, and for the synthetic hydromagnesite, respectively. © 2011 Elsevier B.V.
ACS Nano
Graphene is an interesting electronic material. However, flat monolayer graphene does not have significant gap in the electronic density of states, required for a large on-off ratio in logic applications. We propose here a novel device architecture, composed of self-folded carbon nanotube-graphene hybrids, which have been recently observed experimentally in Joule-heated graphene. These experiments demonstrated the feasibility of cutting, folding, and welding few-layer graphene in situ to form all-carbon nanostructures with complex topologies. The electronic gap of self-folded nanotubes can be combined with the semimetallicity of graphene electrodes to form a "metal-semiconductor- metal" junction. By ab initio calculations we demonstrate large energy gaps in the transmission spectra of such junctions, which preserve the intrinsic transport characteristics of the semiconducting nanotubes despite topologically necessary disinclinations at the flat graphene-curved nanotube interface. These all-carbon devices are proposed to be constructed by contact probe cutting and high-temperature annealing and, if produced, would be chemically stable at room temperature under normal gas environments. © 2011 American Chemical Society.
Proceedings of SPIE - The International Society for Optical Engineering
The Department of Energy and the Sandia National Laboratories Wind Power Technology Department have initiated a number of wind turbine blade sensing technology projects with a major goal of understanding the issues and challenges of incorporating new sensing technologies in wind turbine blades. The projects have been highly collaborative with teams from several commercial companies, universities, other national labs, government agencies and wind industry partners. Each team provided technology that was targeted for a particular application that included structural dynamics, operational monitoring, non-destructive evaluation and structural health monitoring. The sensing channels were monitored, in some or all cases, during blade fabrication, field testing of the blade on an operating wind turbine, and lab testing where the life of the blade was accelerated to blade failure. Implementing sensing systems in wind turbine blades is an engineering challenge and solutions often require the collaboration with a diverse set of expertise. This report discusses some of the key issues, challenges and lessons-learned while implementing sensing technologies in wind turbine blades. Some of the briefly discussed topics include cost and reliability, coordinate systems and references, blade geometry, blade composites, material compatibility, sensor ingress and egress, time synchronization, wind turbine operation environments, and blade failure mechanisms and locations. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Proceedings of SPIE - The International Society for Optical Engineering
Phononic crystals (PnCs) are acoustic devices composed of a periodic arrangement of scattering centers embedded in a homogeneous background matrix with a lattice spacing on the order of the acoustic wavelength. When properly designed, a superposition of Bragg and Mie resonant scattering in the crystal results in the opening of a frequency gap over which there can be no propagation of elastic waves in the crystal, regardless of direction. In a fashion reminiscent of photonic lattices, PnC patterning results in a controllable redistribution of the phononic density of states. This property makes PnCs a particularly attractive platform for manipulating phonon propagation. In this communication, we discuss the profound physical implications this has on the creation of novel thermal phenomena, including the alteration of the heat capacity and thermal conductivity of materials, resulting in high-ZT materials and highly-efficient thermoelectric cooling and energy harvesting. © 2011 SPIE.
Proceedings of SPIE - The International Society for Optical Engineering
We have been investigating the use of coaxial multimode VCSEL/PD (vertical cavity surface emitting laser/photodiode) pairs for positional sensing with emitter to target mirror distances on the order of 1mm. We have observed large variations in signal levels due to the strong optical feedback in these close-coupled systems, employing either heterogeneously integrated commercial components or our own monolithically integrated devices. The feedback effect is larger than anticipated due to the annular geometry of the photodetector. Even though there is very little change in the measured VCSEL total output power, the optical feedback induces variations in the transverse mode distributions in these multimode VCSELs. The higher order modes have a larger divergence angle resulting in changes in the reflected light power incident upon the active detector area for a large range of emitter/mirror separations. We will review the experimental details and provide strategies for avoiding these variations in detected power. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Proceedings of SPIE - The International Society for Optical Engineering
We report the demonstration of a fully micro-fabricated vertical-external-cavity surface-emitting laser (VECSEL) operating at wavelengths near 850 nm. The external-cavity length is on the order of 25 microns, and the external mirror is a dielectric distributed Bragg reflector with a radius of curvature of 130 microns that is micro-fabricated on top of the active semiconductor portion of the device. The additional cavity length, relative to a VCSEL, enables higher output power and narrower laser linewidth, and micro-fabrication of the external mirror preserves the manufacturing cost advantages of parallel lithographic alignment. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
The SCREAMER simulation code is widely used at Sandia National Laboratories for designing and simulating pulsed power accelerator experiments on super power accelerators. A preliminary parameter study of Z with a magnetic switching retrofit illustrates the utility of the automating script for optimizing pulsed power designs. SCREAMER is a circuit based code commonly used in pulsed-power design and requires numerous iterations to find optimal configurations. System optimization using simulations like SCREAMER is by nature inefficient and incomplete when done manually. This is especially the case when the system has many interactive elements whose emergent effects may be unforeseeable and complicated. For increased completeness, efficiency and robustness, investigators should probe a suitably confined parameter space using deterministic, genetic, cultural, ant-colony algorithms or other computational intelligence methods. I have developed SAE2 - a user-friendly, deterministic script that automates the search for optima of pulsed-power designs with SCREAMER. This manual demonstrates how to make input decks for SAE2 and optimize any pulsed-power design that can be modeled using SCREAMER. Application of SAE2 to magnetic switching on model of a potential Z refurbishment illustrates the power of SAE2. With respect to the manual optimization, the automated optimization resulted in 5% greater peak current (10% greater energy) and a 25% increase in safety factor for the most highly stressed element.
Surface Science
The growth of magnesium on ruthenium has been studied by low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM). In LEEM, a layer-by-layer growth is observed except in the first monolayer, where the completion of the first layer in inferred by a clear peak in electron reflectivity. Desorption from the films is readily observable at 400 K. Real-space STM and low-energy electron diffraction confirm that sub-monolayer coverage presents a moiré pattern with a 12 Å periodicity, which evolves with further Mg deposition by compressing the Mg layer to a 22 Å periodicity. Layer-by-layer growth is followed in LEEM up to 10 ML. On films several ML thick a substantial density of stacking faults are observed by dark-field imaging on large terraces of the substrate, while screw dislocations appear in the stepped areas. The latter are suggested to result from the mismatch in heights of the Mg and Ru steps. Quantum size effect oscillations in the reflected LEEM intensity are observed as a function of thickness, indicating an abrupt Mg/Ru interface. © 2011 Elsevier B.V.
Abstract not provided.
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide. The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. It is targeted specifically to run on large-scale parallel computing platforms but also runs well on a variety of architectures including single processor workstations. It also aims to support a variety of devices and models specific to Sandia needs. This document is intended to complement the Xyce Users Guide. It contains comprehensive, detailed information about a number of topics pertinent to the usage of Xyce. Included in this document is a netlist reference for the input-file commands and elements supported within Xyce; a command line reference, which describes the available command line arguments for Xyce; and quick-references for users of other circuit codes, such as Orcad's PSpice and Sandia's ChileSPICE.
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.
This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.
Abstract not provided.
The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.
Abstract not provided.
This report compiles 3-D finite element analyses performed to evaluate the stability of Strategic Petroleum Reserve (SPR) caverns over multiple leach cycles. When oil is withdrawn from a cavern in salt using freshwater, the cavern enlarges. As a result, the pillar separating caverns in the SPR fields is reduced over time due to usage of the reserve. The enlarged cavern diameters and smaller pillars reduce underground stability. Advances in geomechanics modeling enable the allowable pillar to diameter ratio (P/D) to be defined. Prior to such modeling capabilities, the allowable P/D was established as 1.78 based on some very limited experience in other cavern fields. While appropriate for 1980, the ratio conservatively limits the allowable number of oil drawdowns and hence limits the overall utility and life of the SPR cavern field. Analyses from all four cavern fields are evaluated along with operating experience gained over the past 30 years to define a new P/D for the reserve. A new ratio of 1.0 is recommended. This ratio is applicable only to existing SPR caverns.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Hydrology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review B
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Cement and Concrete Composites
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM Journal on Applied Mathematics
Abstract not provided.
An implicit time integration algorithm for a non-local, state-based, peridynamics plasticity model is developed. The flow rule was proposed in [3] without an integration strategy or yield criterion. This report addresses both of these issues and thus establishes the first ordinary, state-based peridynamics plasticity model. Integration of the flow rule follows along the lines of the classical theories of rate independent J{sub 2} plasticity. It uses elastic force state relations, an additive decomposition of the deformation state, an elastic force state domain, a flow rule, loading/un-loading conditions, and a consistency condition. Just as in local theories of plasticity (LTP), state variables are required. It is shown that the resulting constitutive model does not violate the 2nd law of thermodynamics. The report also develops a useful non-local yield criterion that depends upon the yield stress and horizon for the material. The modulus state for both the ordinary elastic material and aforementioned plasticity model is also developed and presented.
SIAM Review
Abstract not provided.
Sandia National Laboratory/New Mexico's (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each fiscal year (FY) significant environmental aspects are identified and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are designed to mitigate the impact of SNL/NM's operations on the environment. An annual summary of the results achieved towards meeting established objectives and targets provides a connection to and rational for annually revised significant aspects. The purpose of this document is to summarize the results achieved and documented in FY2010.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.