Publications

Results 9201–9300 of 99,299

Search results

Jump to search filters

Report on High Energy Arcing Fault Experiments: Experimental Results from Low-Voltage Switchgear Enclosures

Lafleur, Angela (Chris); Taylor, Gabriel; Putorti Jr., Anthony D.; Salley, Mark H.

This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena for low-voltage metal enclosed switchgear containing aluminum conductors. This report covers full-scale laboratory experiments using representative nuclear power plant (NPP) three-phase electrical equipment. Electrical, thermal, and pressure data were recorded for each experiment and documented in this report. This report covers experiments performed on two low-voltage switchgear units with each unit consisting of two vertical sections. The data collected supports characterization of the low-voltage HEAF hazard and these results will be used to support potential improvements in fire probabilistic risk assessment (PRA) methods. The experiments were performed at KEMA Labs located in Chalfont, Pennsylvania. The experimental design, setup, and execution were completed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA. In addition, representatives from the Electric Power Research Institute (EPRI) observed some of the experimental setup and execution. The HEAF experiments were performed between August 26 and Augsut 29, 2019 on nearidentical Westinghouse Type DS low-voltage metal-enclosed indoor switchgear. The threephase arcing fault was initiated on the aluminum main bus or in select cases on the copper bus stabs near the breaker. These experiments used either nominal 480 volts AC or 600 volts AC. Durations of the experiments ranged from approximately 0.4 s to 8.3 s with fault currents ranging from approximately 9.2 kA to 19.3 kA. Real-time electrical operating conditions, including voltage, current and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers, radiometers, and slug calorimeters at various locations around the electrical enclosures. Environmental measurements of breakdown, conductivity and electromagnetics were also taken. The experiments were documented with normal and high-speed videography, infrared imaging and photography. The results, while limited, indicated the difficulty in maintaining and sustaining low-voltage arcs on aluminum components of sufficient duration and at a single point as observed operating experience.

More Details

A Proposed Geospatial Data Preservation Strategy for DOE's Office of Legacy Management

Bleakly, Denise; Linard, Joshua; Cuneo, Matthew J.

Identifying and planning preservation and curation activities associated with geospatial data will improve the ability of the U.S. Department of Energy Office of Legacy Management (LM) to support their core mission of protecting human health and the environment. This report documents the development LM's strategy for preserving and curating geospatial data within the context of LM's data-lifecycle-management framework. The strategy consists of preservation and curation elements, specific activities, and key enabling factors that ensure LM's geospatial data is maintained. Preservation elements enable the effective preservation of LM's geospatial data and recognizes that strategies need to be flexible to adapt to ongoing changes in scale, technology, and standards. Key enabling factors are intended to highlight critical data management responsibilities that must be addressed by LM to meet its preservation and curation objectives. A summary of best practices for geospatial data preservation is provided as part of the strategy.

More Details

Strategic Petroleum Reserve Enhanced Monitoring Compendium - FY 2021

Moriarty, Dylan M.

The Strategic Petroleum (SPR) is the world’s largest supply of crude oil. The reserve consists of fours sites in Louisiana and Texas. Each site stores crude in deep, underground salt caverns. It is the mission of the SPR’s Enhanced Monitoring Program to examine all available data to inform our understanding of each site. This report discusses the data, processes and results for each of the four sites.

More Details

Discrete modeling of a transformer with ALEGRA

Rodriguez, Angel E.; Niederhaus, John H.J.; Greenwood, Wesley J.; Clutz, Christopher C.

We report progress on a task to model transformers in ALEGRA using the “Transient Magnetics” option. We specifically evaluate limits of the approach resolving individual coil wires. There are practical limits to the number of turns in a coil that can be numerically modeled, but calculated inductance can be scaled to the correct number of turns in a simple way. Our testing essentially confirmed this “turns scaling” hypothesis. We developed a conceptual transformer design, representative of practical designs of interest, and that focused our analysis. That design includes three coils wrapped around a rectangular ferromagnetic core. The secondary and tertiary coils have multiple layers. The tertiary has three layers of 13 turns each; the secondary has five layers of 44 turns; the primary has one layer of 20 turns. We validated the turns scaling of inductance for simple (one-layer) coils in air (no core) by comparison to available independent calculations for simple rectangular coils. These comparisons quantified the errors versus reduced number of turns modeled. For more than 3 turns, the errors are <5%. The magnetic field solver failed to converge (within 5000 iterations) for >10 turns. Including the core introduced some complications. It was necessary to capture the core surfaces in thin grid sheaths to minimize errors in computed magnetic energy. We do not yet have quantitative benchmarks with which to compare, but calculated results are qualitatively reasonable.

More Details

Document Retrieval and Ranking using Similarity Graph Mean Hitting Times

Dunlavy, Daniel M.; Chew, Peter A.

We present a novel approach to information retrieval and document analysis based on graph analytic methods. Traditional information retrieval methods use a set of terms to define a query that is applied against a document corpus to identify the documents most related to those terms. In contrast, we define a query as a set of documents of interest and apply the query by computing mean hitting times between this set and all other documents on a document similarity graph abstraction of the semantic relationships between all pairs of documents. We present the steps of our approach along with a simple example application illustrating how this approach can be used to find documents related to two or more documents or topics of interest.

More Details

The 2020 Nonlinear Mechanics and Dynamics Research Institute

Kuether, Robert J.; Allensworth, Brooke M.; Bishop, Joseph E.

The 2020 Nonlinear Mechanics and Dynamics (NOMAD) Research Institute was successfully held from June 15 to July 30, 2020. NOMAD brings together participants with diverse technical backgrounds to work in small teams to cultivate new ideas and approaches in engineering mechanics and dynamics research. NOMAD provides an opportunity for researchers – especially early career researchers - to develop lasting collaborations that go beyond what can be established from the limited interactions at their institutions or at annual conferences. A total of 11 students participated in the seven-week long program held virtually due to the COVID-19 health pandemic. The students collaborated on one of four research projects that were developed by various mentors from Sandia National Laboratories, the University of New Mexico, and other academic and research institutions. In addition to the research activities, the students attended weekly technical seminars, various virtual tours, and socialized at virtual gatherings. At the end of the summer, the students gave a final technical presentation on their research findings. Many of the research discoveries made at NOMAD 2020 are published as proceedings at technical conferences and have direct alignment with the critical mission work performed at Sandia.

More Details

A Review of Local-to-Nonlocal Coupling Methods in Nonlocal Diffusion and Nonlocal Mechanics

Journal of Peridynamics and Nonlocal Modeling

D'Elia, Marta; Elia, Xingjie'; Seleson, Pablo D.; Tian, Xiaochuan; Yu, Yue

Local-to-nonlocal (LtN) coupling refers to a class of methods aimed at combining nonlocal and local modeling descriptions of a given system into a unified coupled representation. This allows to consolidate the accuracy of nonlocal models with the computational expediency of their local counterparts, while often simultaneously removing nonlocal modeling issues such as surface effects. The number and variety of proposed LtN coupling approaches have significantly grown in recent years, yet the field of LtN coupling continues to grow and still has open challenges. This review provides an overview of the state of the art of LtN coupling in the context of nonlocal diffusion and nonlocal mechanics, specifically peridynamics. Furthermore, we present a classification of LtN coupling methods and discuss common features and challenges. The goal of this review is not to provide a preferred way to address LtN coupling but to present a broad perspective of the field, which would serve as guidance for practitioners in the selection of appropriate LtN coupling methods based on the characteristics and needs of the problem under consideration.

More Details

Magnetic field effects on laser energy deposition and filamentation in magneto-inertial fusion relevant plasmas

Physics of Plasmas

Lewis, Sean M.; Weis, Matthew R.; Speas, Christopher S.; Kimmel, Mark; Bengtson, Roger D.; Breizman, Boris; Geissel, Matthias; Gomez, Matthew R.; Harvey-Thompson, Adam J.; Kellogg, Jeffrey; Long, Joel; Quevedo, Hernan J.; Rambo, Patrick K.; Riley, Nathan R.; Schwarz, Jens; Shores, Jonathon; Stahoviak, John; Ampleford, David J.; Porter, John L.; Ditmire, Todd; Looker, Quinn M.; Struve, Kenneth

We report on experimental measurements of how an externally imposed magnetic field affects plasma heating by kJ-class, nanosecond laser pulses. The experiments reported here took place in gas cells analogous to magnetized liner inertial fusion targets. We observed significant changes in laser propagation and energy deposition scale lengths when a 12T external magnetic field was imposed in the gas cell. We find evidence that the axial magnetic field reduces radial electron thermal transport, narrows the width of the heated plasma, and increases the axial plasma length. Reduced thermal conductivity increases radial thermal gradients. This enhances radial hydrodynamic expansion and subsequent thermal self-focusing. Our experiments and supporting 3D simulations in helium demonstrate that magnetization leads to higher thermal gradients, higher peak temperatures, more rapid blast wave development, and beam focusing with an applied field of 12T.

More Details

Connections between nonlocal operators: From vector calculus identities to a fractional Helmholtz decomposition

Gulian, Mamikon; Mengesha, Tadele; Scott, James C.

Nonlocal vector calculus, which is based on the nonlocal forms of gradient, divergence, and Laplace operators in multiple dimensions, has shown promising applications in fields such as hydrology, mechanics, and image processing. In this work, we study the analytical underpinnings of these operators. We rigorously treat compositions of nonlocal operators, prove nonlocal vector calculus identities, and connect weighted and unweighted variational frameworks. We combine these results to obtain a weighted fractional Helmholtz decomposition which is valid for sufficiently smooth vector fields. Our approach identifies the function spaces in which the stated identities and decompositions hold, providing a rigorous foundation to the nonlocal vector calculus identities that can serve as tools for nonlocal modeling in higher dimensions.

More Details

Summary of Peace Engineering Biome Kickoff Workshop

Armenta, Mikaela L.; Hermina, Wahid L.; Hayden, Nancy K.; Passell, Howard; Garcia, Pablo; Jordan, Ramiro; Koechner, Donna; Amadei, Bernard

There are urgent calls to action by the NAE, the Nobel Prize Summit, the UN, and global scientists to address and solve, in this decade (2020 – 2030), crucial and widely recognized global challenges to peace and security before they become more complex and more environmentally, financially, and socially costly; before we reach the point of no return.

More Details

Effect of the Addition of a Low Equivalent Stress Mechanism to the Analysis of Geomechanical Behavior of the SPR West Hackberry Site

Sobolik, Steven; Ross, Tonya S.A.

Sandia National Laboratories has long used the Munson-Dawson (M-D) model to predict the geomechanical behavior of salt caverns used to store oil at the Strategic Petroleum Reserve (SPR). Salt creep causes storage caverns to deform inward, thus losing volume. This loss of volume affects the salt above and around the caverns, puts stresses and strains on borehole casings, and creates surface subsidence which affects surface infrastructure. Therefore, accurate evaluation of salt creep behavior drives decisions about cavern operations. Parameters for the M-D model are typically fit against laboratory creep tests, but nearly all historic creep tests have been performed at equivalent stresses of 8 MPa or higher. Creep rates at lower equivalent stresses are very slow, such that tests take months or years to run, and the tests are sensitive to small temperature perturbations (<0.1°C). A recent collaboration between US and German researchers, recently characterized the creep behavior at low equivalent (deviatoric) stresses (<8 MPa) of salt from the Waste Isolation Pilot Plant. In addition, the M-D model was recently extended to include a low stress creep “mechanism”. This paper details new simulations of SPR caverns that use this extended M-D model, called the M-D Viscoplastic model. The results show that the inclusion of low stress creep significantly alters the prediction of steady-state cavern closure behavior and indicate that low stress creep is the dominant displacement mechanism at the dome scale. The implications for evaluating cavern and well integrity are demonstrated by investigating three phenomena: the extent of stress changes around the cavern; the predicted vertical strains applied to wellbore casings; and the evaluation of oscillating stress changes around the cavern due to oil sale cycles and their potential effect on salt fatigue.

More Details

Identification and Resolution of Gaps in Mechanistic Source Term and Consequence Analysis Modeling for Molten Salt Reactors Salt Spill Scenarios

Leute, Jennifer E.; Beeny, Bradley A.; Gelbard, Fred M.; Clark, Andrew

This report represents an assessment of the gaps in Mechanistic Source Term (MST) and consequence assessment modeling for Molten Salt Reactors (MSRs). The current capabilities for MELCOR and the MELCOR Accident Code System (MACCS) are discussed, along with updates needed in order to address specific needs for MSRs. A test plan developed by Argonne National Laboratories is discussed as addressing some of these gaps, while some will require additional attention. Further recommendations are made on addressing these gaps. This report satisfies the DOE NE Milestone M2RD-21SN0601061 to leverage MELCOR and MACCS to identify parameters of importance for source term assessments for salt spill experiments.

More Details

Sodium Fire Collaborative Study Progress CNWG Fiscal Year 2021

Foulk, James W.; Aoyagi, Mitsuhiro

This report discusses the progress on the collaboration between Sandia National Laboratories (Sandia) and Japan Atomic Energy Agency (JAEA) on the sodium fire research in fiscal year (FY) 2021 and is a continuation of the FY2020 progress report. In this report, we only report the changes made to the current sodium pool fire model in MELCOR. We modified and corrected many control functions to enhance the current model from the FY2020 report. This year’s enhancements relate to better agreement of the suspended aerosol measurement from JAEA’s F7 series tests. Staff from Sandia and JAEA conducted the validation studies of the sodium pool fire model in MELCOR. To validate this pool fire model with the latest enhancement, JAEA sodium pool fire experiments (F7-1 and F7-2) were used. The results of the calculation, including the code-to-code comparisons are discussed as well as suggestions for further model improvement. Finally, recommendations are made for new MELCOR simulations for FY2022.

More Details

A Method for Evaluating and Tracking Production-Sample Test (PST) Delay Risk

Munoz, Dominic A.; Cruz, Ivan V.; Waller, William Y.; Bendorf, Mark

This report describes a method for evaluating risk from delayed Production Sample Testing (PST), and strategies for reducing test backlogs. Risk contributions to overall risk from delayed PST include a Steady State Risk (SSR) contribution that is inherent in the qualified design and manufacturing processes, and a Non-Homogenous Production Risk (NHPR) contribution from production variation. Both definitions and evaluation techniques for these risk contributions are provided along with correlation to the standard Quality Assurance Process, QA001.2, risk ranking matrix. Methods for tracking test backlogs, and reducing backlogs are also discussed. The delayed PST evaluation method described here includes the merger of both slightly quantitative methods for tracking defect levels and the propensity for production variation with general risk management tracking tools like the likelihood vs. consequence risk ranking matrix. This merger is important because it allows more effective evaluation and communication with regards to delayed PST.

More Details
Results 9201–9300 of 99,299
Results 9201–9300 of 99,299