Publications

Results 73801–74000 of 96,771

Search results

Jump to search filters

RadCat 3.0 user guide

Weiner, Ruth F.; Dennis, Matthew L.; Osborn, Douglas M.

RADTRAN is an internationally accepted program and code for calculating the risks of transporting radioactive materials. The first versions of the program, RADTRAN I and II, were developed for NUREG-0170 (USNRC, 1977), the first environmental statement on transportation of radioactive materials. RADTRAN and its associated software have undergone a number of improvements and advances consistent with improvements in both available data and computer technology. The version of RADTRAN currently bundled with RadCat is RADTRAN 6.0. This document provides a detailed discussion and a guide for the use of the RadCat 3.0 Graphical User Interface input file generator for the RADTRAN code. RadCat 3.0 integrates the newest analysis capabilities of RADTRAN 6.0 which includes an economic model, updated loss-of-lead shielding model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.0.

More Details

A uniform nodal strain tetrahedron with isochoric stabilization

International Journal for Numerical Methods in Engineering

Gee, M.W.; Dohrmann, C.R.; Key, S.W.; Wall, W.A.

A stabilized node-based uniform strain tetrahedral element is presented and analyzed for finite deformation elasticity. The element is based on linear interpolation of a classical displacement-based tetrahedral element formulation but applies nodal averaging of the deformation gradient to improve mechanical behavior, especially in the regime of near-incompressibility where classical linear tetrahedral elements perform very poorly. This uniform strain approach adopted here exhibits spurious modes as has been previously reported in the literature. We present a new type of stabilization exploiting the circumstance that the instability in the formulation is related to the isochoric strain energy contribution only and we therefore present a stabilization based on an isochoric-volumetric splitting of the stress tensor. We demonstrate that by stabilizing the isochoric energy contributions only, reintroduction of volumetric locking through the stabilization can be avoided. The isochoric-volumetric splitting can be applied for all types of materials with only minor restrictions and leads to a formulation that demonstrates impressive performance in examples provided. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

Planar wire array dynamics and radiation scaling at multi-MA levels on the saturn pulsed power generator

AIP Conference Proceedings

Jones, Brent M.; Cuneo, M.E.; Ampleford, D.J.; Coverdale, Christine A.; Waisman, E.M.; Vesey, Roger A.; Jones, Brent M.; Esaulov, A.A.; Kantsyrev, V.L.; Safronova, A.S.; Chuvatin, A.S.; Rudakov, L.I.

Planar wire arrays are studied at 3-6 MA on the Saturn pulsed power generator as potential drivers of compact hohlraums for inertial confinement fusion studies . Comparison with zero-dimensional modeling suggests that there is significant trailing mass. The modeled energy coupled from the generator cannot generally explain the energy in the main x-ray pulse. Preliminary comparison at 1-6 MA indicates sub-quadratic scaling of x-ray power in a manner similar to compact cylindrical wire arrays. Time-resolved pinhole images are used to study the implosion dynamics. © 2009 American Institute of Physics.

More Details

Radiative properties of implosions of stainless steel wire arrays with application to astrophysics

AIP Conference Proceedings

Safronova, A.S.; Ouart, N.D.; Kantsyrev, V.L.; Esaulov, A.A.; Safronova, U.I.; Williamson, K.M.; Shrestha, I.; Coverdale, Christine A.; Jones, Brent M.; Deeney, C.

Experiments with different stainless steel (SS) wire loads were performed on the 1 MA Zebra Z-pinch generator at University of Nevada, Reno. The wire array loads consisted of 7.6 (μm SS wires and had 10 wires for the planar wire array with an interwire gap of 1 mm and 8 wires for the cylindrical wire array of a 16 mm diameter. In addition, a single-wire experiment with a 25 (μm SS wire was carried out. The different wire loads were used to provide a broader spectrum of plasma conditions. Time-integrated and time-gated x-ray images, as well as time-integrated, spatially-resolved and spatially-integrated x-ray spectra, were collected and analyzed. Both K-shell and L-shell radiation were recorded using LiF and KAP crystal spectrometers, respectively. Non-LTE kinetic models of Fe and Ni are employed to derive plasma parameters. For axially resolved L-shell spectra, the resulting electron temperatures are between 230 and 300 eV (higher near the cathode) and electron densities vary from 10 19 to 10 20 cm -3 dependent on the load. The advantage of using Z-pinch plasmas for astrophysical applications is highlighted. © 2009 American Institute of Physics.

More Details

2D radiation MHD K-shell modeling of single wire array stainless steel experiments on the Z machine

AIP Conference Proceedings

Thornhill, J.W.; Giuliani, J.L.; Apruzese, J.P.; Chong, Y.K.; Davis, J.; Dasgupta, A.; Whitney, K.G.; Clark, R.W.; Jones, Brent M.; Coverdale, Christine A.; Ampleford, David A.; Cuneo, M.E.; Deeney, C.

Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives ID into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing ID and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator. © 2009 American Institute of Physics.

More Details

1D scaling with ablation for K-shell radiation from stainless steel wire arrays

AIP Conference Proceedings

Giuliani, J.L.; Thornhill, J.W.; Dasgupta, A.; Clark, R.W.; Davis, J.; Jones, Brent M.; Cuneo, M.; Coverdale, C.A.; Deeney, C.

A 1D Lagrangian magnetohydrodynamic z-pinch simulation code is extended to include wire ablation. The plasma transport coefficients are calibrated to reproduce the K-shell yields measured on the Z generator for three stainless steel arrays of diameter 55 mm and masses ranging from 1.8 to 2.7 mg. The resulting 1D scaling model is applied to a larger SS array (65 mm and 2.5 mg) on the refurbished Z machine. Simulation results predict a maximum K-shell yield of 77 kJ for an 82 kV charging voltage. This maximum drops to 42 kJ at 75 kV charging. Neglecting the ablation precursor leads to a ∼10% change in the calculated yield. © 2009 American Institute of Physics.

More Details

Astrophysical jets with conical wire arrays: Radiative cooling, rotation & deflection

AIP Conference Proceedings

Ampleford, David A.; Lebedev, S.V.; Ciardi, A.; Bland, S.N.; Hall, G.N.; Bott, S.C.; Suzuki-Vidal, F.; Palmer, J.B.A.; Jennings, C.A.; Chittenden, J.P.

Highly collimated outflows or jets are produced by a number of astrophysical objects including protostars. The morphology and collimation of these jets is thought to be strongly influenced by the effects of radiative cooling, angular momentum and the interstellar medium surrounding the jet. Astrophysically relevant experiments are performed with conical wire array z-pinches investigating each of these effects. It is possible in each case to enter the appropriate parameter regime, leading the way towards future experiments where these different techniques can be more fully combined. © 2009 American Institute of Physics.

More Details

Application of diamond-like nanocomposite tribological coatings on LIGA microsystem parts

Journal of Microelectromechanical Systems

Prasad, Somuri V.; Scharf, Thomas W.; Kotula, Paul G.; Michael, Joseph R.; Christenson, Todd R.

The major focus of this study was to examine the feasibility of applying diamond-like nanocomposite (DLN) coatings on the sidewalls of Ni alloy parts fabricated using lithographie, galvanoformung and abformung (LIGA: a German acronym that means lithography, electroforming, and molding) for friction and wear control. Planar test coupons were employed to understand the friction mechanisms in regimes relevant to LIGA microsytems. Friction tests were conducted on planar test coupons as well as between LIGA-fabricated test structures in planar-sidewall and sidewall-sidewall configurations. Measurements were made in dry nitrogen and air with 50% relative humidity by enclosing the friction tester in an environmental chamber. In contrast to bare metal-metal contacts, minimal wear was exhibited for the DLN-coated LIGA NiMn alloy parts and test coupons. The low friction behavior of DLN was attributed to its ability to transfer to the rubbing counterface providing low interfacial shear at the sliding contact. The coating coverage and chemistry on the sidewalls and the substrate-coating interface integrity were examined by transmission electron microscopy, Automated eXpert Spectral Image Analysis, and electron backscatter diffraction on cross sections prepared by focused ion beam microscopy. The role of novel characterization techniques to evaluate the surface coatings for LIGA microsystems technology is highlighted. © 2009 IEEE.

More Details

Narrow linewidth VCSELs for high-resolution spectroscopy

Proceedings of SPIE - The International Society for Optical Engineering

Serkland, Darwin K.; Keeler, Gordon A.; Geib, K.M.; Peake, Gregory M.

A future generation of high-performance low-power atomic systems is expected to require VCSEL linewidths below 10 MHz for compatibility with the natural atomic linewidth (5 MHz for cesium) that is realized with atomic beams, trapped atoms, and trapped ions. This paper describes initial efforts at Sandia to reduce VCSEL linewidth by increasing the effective cavity length of an 850-nm monolithic VCSEL. In particular, two aspects of VCSEL design will be discussed: the Q of the VCSEL cavity, and the linewidth enhancement factor of the active region material. We report a factor of two linewidth reduction, from 50 MHz for our standard oxide-aperture VCSEL to 23 MHz for an extended-cavity VCSEL. ©2009 SPIE.

More Details

Detailed hcci exhaust speciation and the sources of hydrocarbon and oxygenated hydrocarbon emissions

SAE International Journal of Fuels and Lubricants

Dec, John E.; Davisson, M.L.; Sjoberg, Carl M.; Leif, Roald N.; Hwang, Wontae H.

Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (Φ{phonetic}) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of Φ{phonetic} = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDCcompression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde. These two species were analyzed using high-performance liquid chromatography. In addition, standard emissions-bench exhaust analysis equipment was used to measure total HC, CO, CO2, O2, and NOX simultaneously with the sampling for the detailed-speciation analysis. Good overall agreement was found between the emissions-bench data and total HC from the detailed measurements. Unreacted fuel, iso-octane, was by far the most prevalent HC species at all operating conditions. Numerous other HC and oxygenated HC (OHC) species were found that could be identified as breakdown products of iso-octane. Several smaller HC and OHC species were also identified. At the highest Φ{phonetic}, emissions of all species were low, except iso-octane. As Φ{phonetic} was reduced, emissions of all species increased, but the rate of increase varied substantially for the different species. Analysis showed that these differences were related to the degree of breakdown from the parent fuel and the in-cylinder location where they formed. SOI-sweep results indicated that stratification improves combustion efficiency by reducing the fuel penetration to the crevice and cylinder-wall boundary-layer regions, as well as by creating a locally richer mixture that burns hotter and more completely.

More Details

Influence of fuel autoignition reactivity on the high-load limits of HCCI engines

SAE International Journal of Engines

Sjoberg, Carl M.; Dec, John E.

This work explores the high-load limits of HCCI for naturally aspirated operation. This is done for three fuels with various autoignition reactivity: iso-octane, PRF80, and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liter displacement), mostly with a CR = 14 piston installed, but with some tests at CR = 18. Five load-limiting factors were identified: 1) NOx-induced combustion-phasing run-away, 2) wall-heating-induced run-away, 3) EGR-induced oxygen deprivation, 4) wandering unsteady combustion, and 5) excessive exhaust NOx. These experiments at 1200 rpm show that the actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the selected CA50, and in some cases, the tolerable level of NOx emissions. For iso-octane, which has the highest resistance to autoignition of the fuels tested, the NOx emissions become unacceptable at IMEPg = 473 kPa. This happens before wandering and unsteady combustion becomes an issue for IMEPg > 486 kPa. The NOx is caused by high peak-combustion temperatures resulting from the high intake temperature required for this low-reactivity fuel. Iso-octane operation with a CR = 18 piston reduces the intake-temperature requirement. Consequently, the exhaust NOx issue vanishes while the IMEPg can be increased to 520 kPa before wall-heating-induced run-away become an issue. For a very reactive fuel like PRF60, large amounts of EGR are required to control the combustion phasing. Therefore, the maximum IMEPg becomes limited at 643 kPa by the available oxygen as the EGR gases displace air. A fuel of intermediate reactivity, PRF80, exhibits the highest IMEPg for the conditions of this study - 651 kPa. For this fuel, the maximum IMEPg becomes limited by NOx-induced run-away. This happens because even small amounts of NOx recycled via residuals enhance the autoignition sufficiently to advance the ignition point. This leads to higher peak-combustion temperatures and more NOx formation, thus making a very rapid run-away situation inevitable.

More Details

Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems

Journal of Computational Physics

Marzouk, Youssef M.; Najm, H.N.

We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a spatial or temporal field, endowed with a hierarchical Gaussian process prior. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of Markov chain Monte Carlo) and are compounded by high dimensionality of the posterior. We address these challenges by introducing truncated Karhunen-Loève expansions, based on the prior distribution, to efficiently parameterize the unknown field and to specify a stochastic forward problem whose solution captures that of the deterministic forward model over the support of the prior. We seek a solution of this problem using Galerkin projection on a polynomial chaos basis, and use the solution to construct a reduced-dimensionality surrogate posterior density that is inexpensive to evaluate. We demonstrate the formulation on a transient diffusion equation with prescribed source terms, inferring the spatially-varying diffusivity of the medium from limited and noisy data. © 2008 Elsevier Inc.

More Details

Fundamental spray and combustion measurements of JP-8 at diesel conditions

SAE International Journal of Commercial Vehicles

Pickett, Lyle M.; Hoogterp, Laura

For logistical reasons, the military requires that jet fuel (JP-8, F-34) be used in both jet engines and diesel engines. While JP-8-fueled diesel engines appear to operate successfully in many cases, negative impacts, including engine failures, are occasionally reported. As diesel combustion with JP-8 has not been explored in great detail, fundamental information about JP-8 fuel spray combustion is needed. In this study, we report measurements of liquid-phase penetration length, vapor penetration, and ignition delay made in an optically- accessible combustion vessel over a range of high- temperature, high-pressure operating conditions applicable to a diesel engine. Results show that the liquid-phase penetration of JP-8 is less than that of diesel, owing to the lower boiling point temperatures of JP-8. Despite the more rapid vaporization, the vapor penetration rate of JP-8 matches that of diesel and ignition does not advance. In fact, with no required cetane number specification for JP-8, ignition delay times are 25-50% longer for this 38-cetane-number JP-8 fuel sample compared to a 46-cetane-number #2 diesel sample. High-speed shadowgraph imaging shows that a cool flame precedes ignition for both diesel and JP-8 but the time of the cool flame heat release is delayed for JP- 8, consistent with the overall ignition delay trend.

More Details

Efficiencies from spatially-correlated uncertainty and sampling in continuous-variable ordinal optimization

SAE International Journal of Materials and Manufacturing

Romero, Vicente J.

A very general and robust approach to solving continuous-variable optimization problems involving uncertainty in the objective function is through the use of ordinal optimization. At each step in the optimization problem, improvement is based only on a relative ranking of the uncertainty effects on local design alternatives, rather than on precise quantification of the effect. One simply asks "Is that alternative better or worse than this one?"-not "HOW MUCH better or worse is that alternative to this one?" The answer to the latter question requires precise characterization of the uncertainty- with the corresponding sampling/integration expense for precise resolution. By looking at things from an ordinal ranking perspective instead, the trade-off between computational expense and vagueness in the uncertainty characterization can be managed to make cost-effective stepping decisions in the design space. This paper demonstrates correct advancement in a continuous-variable probabilistic optimization problem despite extreme vagueness in the statistical characterization of the design options. It is explained and shown how spatial correlation of uncertainty in such design problems can be exploited to dramatically increase the efficiency of ordinal approaches to optimization under uncertainty.

More Details

Stable Galerkin reduced order models for linearized compressible flow

Journal of Computational Physics

Barone, Matthew F.; Kalashnikova, Irina; Segalman, Daniel J.; Thornquist, Heidi K.

The Galerkin projection procedure for construction of reduced order models of compressible flow is examined as an alternative discretization of the governing differential equations. The numerical stability of Galerkin models is shown to depend on the choice of inner product for the projection. For the linearized Euler equations, a symmetry transformation leads to a stable formulation for the inner product. Boundary conditions for compressible flow that preserve stability of the reduced order model are constructed. Preservation of stability for the discrete implementation of the Galerkin projection is made possible using a piecewise-smooth finite element basis. Stability of the reduced order model using this approach is demonstrated on several model problems, where a suitable approximation basis is generated using proper orthogonal decomposition of a transient computational fluid dynamics simulation. © 2008 Elsevier Inc.

More Details

PIV and PLIF to evaluate mixture formation in a direct-injection hydrogen-fuelled engine

SAE International Journal of Engines

Kaiser, Sebastian A.; White, Christopher M.

In an optically accessible single-cylinder engine fueled with hydrogen, acetone planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) are used to evaluate in-cylinder mixture formation. The experiments include measurements for engine operation with hydrogen injection in-cylinder either prior to or after intake valve closure (IVC). Pre-IVC injection is used to produce a near-homogeneous mixture for PLIF calibration experiments and to establish a baseline comparison for post-IVC injection. Calibration experiments and a temperature correction allow conversion of the acetone fluorescence signal to equivalence ratio. For post-IVC injection with start of injection (SOI) coincident with IVC, PLIF results are similar to pre-IVC injection. With retard of SOI from IVC, mixture inhomogeneities increase monotonically, with high hydrogen concentration spatially located near the injector and within a smaller volume. For injection late in the cycle, the turbulent fuel-rich area is sharply delineated from the more quiescent fuel-lean region. The PIV vector plots suggest that the observed spatial distribution of hydrogen for SOI retarded from IVC is a consequence of the in-cylinder flow field generated by the injection event. Specifically, in the measured r-θ plane of the cylinder and in the field of view imaged, the vector plots show a large-scale mean flow towards the injector. It is conjectured that the observed flow field results from jet-wall interactions that redirect the leading edge of some of the fuel jets back towards the injector, creating a counter-flow with respect to the other fuel jets, which inhibits further jet penetration. The net result is a high hydrogen concentration near the injector. This scenario confirms that the injector tip geometry, injector location, and injection timing are critical parameters with respect to in-cylinder mixing in direct-injection hydrogenfuelled engine.

More Details

Efficiencies from spatially-correlated uncertainty and sampling in continuous-variable ordinal optimization

SAE International Journal of Materials and Manufacturing

Romero, Vicente J.

A very general and robust approach to solving continuous-variable optimization problems involving uncertainty in the objective function is through the use of ordinal optimization. At each step in the optimization problem, improvement is based only on a relative ranking of the uncertainty effects on local design alternatives, rather than on precise quantification of the effect. One simply asks "Is that alternative better or worse than this one?"-not "HOW MUCH better or worse is that alternative to this one?" The answer to the latter question requires precise characterization of the uncertainty- with the corresponding sampling/integration expense for precise resolution. By looking at things from an ordinal ranking perspective instead, the trade-off between computational expense and vagueness in the uncertainty characterization can be managed to make cost-effective stepping decisions in the design space. This paper demonstrates correct advancement in a continuous-variable probabilistic optimization problem despite extreme vagueness in the statistical characterization of the design options. It is explained and shown how spatial correlation of uncertainty in such design problems can be exploited to dramatically increase the efficiency of ordinal approaches to optimization under uncertainty.

More Details

Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle

SAE International Journal of Engines

Martin, Glen C.; Mueller, Charles J.; Milam, David M.; Radovanovic, Michael S.; Gehrke, Christopher R.

Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder, optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70° and 5 holes x 35°) with 103-μmdiameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70° before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around a 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with poolfire activity. Smoke and NOx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.

More Details

Flow characterization of diffusion flame oscillations using particle image velocimetry

Experiments in Fluids

Yilmaz, Nadir; Lucero, Ralph E.; Donaldson, A.B.; Gill, Walt

Particle image velocimetry (PIV) was used to measure velocity fields inside and around oscillating methane-air diffusion flames with a slot fuel orifice. PIV provided velocity and directional information of the flow field comprised of both the flame and air. From this, information on flow paths of entrained air into the flame were obtained and visualized. These show that at low fuel flow rates for which the oscillations were strongest, the responsible mechanism for the oscillating flow appeared to be the repetitive occurrence of flame quenching. PIV findings indicated that quenching appears to be associated primarily with air entrainment. Velocity was found to be considerably larger in regions where quenching occurred. The shedding of vortices in the shear layer occurs immediately outside the boundary of the flame envelope and was speculated to be the primary driving force for air entrainment. © 2008 Springer-Verlag.

More Details

Adsorption and separation of noble gases by IRMOF-1: Grand canonical monte carlo simulations

Industrial and Engineering Chemistry Research

Greathouse, Jeffery A.; Kinnibrugh, Tiffany L.; Allendorf, Mark D.

The gas storage capacity of metal-organic frameworks (MOFs) is well-known and has been investigated using both experimental and computational methods. Previous Monte Carlo computer simulations of gas adsorption by MOFs have made several questionable approximations regarding framework-framework and framework-adsorbate interactions: potential parameters from general force fields have been used, and framework atoms were fixed at their crystallographic coordinates (rigid framework). We assess the validity of these approximations with grand canonical Monte Carlo simulations for a well-known Zn-based MOF (IRMOF-1), using potential parameters specifically derived for IRMOF-1. Our approach is validated by comparison with experimental results for hydrogen and xenon adsorption at room temperature. The effects of framework flexibility on the adsorption of noble gases and hydrogen are described, as well as the selectivity of IRMOF-1 for xenon versus other noble gases. At both low temperature (78 K) and room temperature, little difference in gas adsorption is seen between the rigid and flexible force fields. Experimental trends of noble gas inflation curves are also matched by the simulation results. Additionally, we show that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures, and this preference correlates with the trend in van der Waals parameters for the adsorbate atoms. © 2009 American Chemical Society.

More Details

How metal films de-wet substrates-identifying the kinetic pathways and energetic driving forces

New Journal of Physics

McCarty, Kevin F.; Hamilton, John C.; Sato, Yu; Saá, Angela; Stumpf, Roland; Figuera, Juan D.; Thurmer, Konrad T.; Jones, Frank; Schmid, Andreas K.; Talin, A.A.; Bartelt, Norman C.

We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

More Details

Thermal conductivity measurements on polycrystalline silicon microbridges using the 3ω technique

Journal of Heat Transfer

Hopkins, Patrick E.; Phinney, Leslie M.

The thermal performance of microelectromechanical systems devices is governed by the structure and composition of the constituent materials as well as the geometrical design. With the continued reduction in the characteristic sizes of these devices, experimental determination of the thermal properties becomes more difficult. In this study, the thermal conductivity of polycrystalline silicon (polysilicon) microbridges are measured with the transient 3ω technique and compared with measurements on the same structures using a steady state Joule heating technique. The microbridges with lengths from 200 μm to 500 μm were designed and fabricated using the Sandia National Laboratories SUMMiT V™ surface micromachining process. The advantages and disadvantages of the two experimental methods are examined for suspended microbridge geometries. The differences between the two measurements, which arise from the geometry of the test structures and electrical contacts, are explained by bond pad heating and thermal resistance effects. Copyright © 2009 by ASME.

More Details

Effects of LIF tracers on combustion in a DI HCCI engine

SAE International Journal of Fuels and Lubricants

Fitzgerald, Russell P.; Steeper, Richard R.; Snyder, Jordan A.

Many experimental efforts to track fuel-air-residual mixture preparation in internal combustion engines have employed laser induced fluorescence (LIF) of tracers. Acetone and 3-pentanone are often chosen as tracers because of their relatively strong LIF signal, weak quenching, and reasonable match to thermo-chemical properties of common fuels such as iso-octane. However, the addition of these tracers to fuel-air mixtures could affect combustion behavior. In this work, we assess these effects to better understand limitations of tracer-based engine measurements. The effects of tracer seeding on combustion phasing, duration, and variation are studied in an HCCI engine using a recompression strategy to accommodate single- and multi-stage-ignition fuels. Using direct-injected (DI) fuels iso-octane and n-heptane, comparisons are made of combustion performance with and without seeding of the intake air (air seeding, as opposed to the more common fuel seeding, is a variation of LIF used to measure residual-gas concentration). Chemical and premixing effects of tracer addition are distinguished by substituting equivalent amounts of fuel for the tracer. Chemical kinetic simulations of iso-octane and n-heptane oxidation help explain the experimentally determined trends. Results show that the phasing of iso-octane combustion can be significantly impacted by premixing effects because of the sensitivity of ignition to charge temperature. For n-heptane, the chemical effects of tracer addition are shown to be more pronounced because of impact on low-temperature heat release. Acetone retards the combustion for both single- and two- stage-ignition fuels, whereas 3-pentanone advances iso- octane combustion while retarding n-heptane. Overall, we found that the impact of tracer addition is modest for the chosen operating conditions since varying the intake temperature can easily compensate for it.

More Details

A simplified model of TiH1.65/KClO4 pyrotechnic ignition

Chen, Ken S.

A simplified model was developed and is presented in this report for simulating thermal transport coupled with chemical reactions that lead to the pyrotechnic ignition of TiH1.65/KClO4 powder. The model takes into account Joule heating via a bridgewire, thermal contact resistance at the wire/powder interface, convective heat loss to the surroundings, and heat released from the TiH1.65- and KClO4-decomposition and TiO2-oxidation reactions. Chemical kinetic sub-models were put forth to describe the chemical reaction rate(s) and quantify the resultant heat release. The simplified model predicts pyrotechnic ignition when heat from the pyrotechnic reactions is accounted for. Effects of six key parameters on ignition were examined. It was found that the two reaction-rate parameters and the thermal contact resistance significantly affect the dynamic ignition process whereas the convective heat transfer coefficient essentially has no effect on the ignition time. Effects of the initial/ambient temperature and electrical current load through the wire are as expected. Ignition time increases as the initial/ambient temperature is lowered or the wire current load is reduced. Lastly, critical needs such as experiments to determine reaction-rate and other model-input parameters and to measure temperature profiles, time to ignition and burn-rate data for model validation as well as efforts in incorporating reaction-rate dependency on pressure are pointed out.

More Details

Aerosol penetration of leak pathways : an examination of the available data and models

Powers, Dana A.

Data and models of aerosol particle deposition in leak pathways are described. Pathways considered include capillaries, orifices, slots and cracks in concrete. The Morewitz-Vaughan criterion for aerosol plugging of leak pathways is shown to be applicable only to a limited range of particle settling velocities and Stokes numbers. More useful are sampling efficiency criteria defined by Davies and by Liu and Agarwal. Deposition of particles can be limited by bounce from surfaces defining leak pathways and by resuspension of particles deposited on these surfaces. A model of the probability of particle bounce is described. Resuspension of deposited particles can be triggered by changes in flow conditions, particle impact on deposits and by shock or vibration of the surfaces. This examination was performed as part of the review of the AP1000 Standard Combined License Technical Report, APP-GW-GLN-12, Revision 0, 'Offsite and Control Room Dose Changes' (TR-112) in support of the USNRC AP1000 Standard Combined License Pre-Application Review.

More Details

Clutter in the GMTI range-velocity map

Doerry, Armin

Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

More Details

Analysis of cavern stability at the Bryan Mound SPR site

Sobolik, Steven R.; Ehgartner, Brian L.

This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve Bryan Mound site. The cavern field comprises 20 caverns. Five caverns (1, 2, 4, and 5; 3 was later plugged and abandoned) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 16 caverns (101-116) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a 3-D geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios due to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant result in this report is relevant to caverns 1, 2, and 5. The caverns have non-cylindrical shapes and have potential regions where the surrounding salt may be damaged during workover procedures. During a workover the normal cavern operating pressure is lowered to service a well. At this point the wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension and large deviatoric stresses at several locations. With time, these stresses relax to a compressive state due to salt creep. However, the potential for salt damage and fracturing exists. The analyses predict tensile stresses at locations with sharp-edges in the wall geometry, or in the case of cavern 5, in the neck region between the upper and lower lobes of the cavern. The effects do not appear to be large-scale, however, so the only major impact is the potential for stress-induced salt falls in cavern 5, potentially leading to hanging string damage. Caverns 1 and 2 have no significant issues regarding leachings due to drawdowns; cavern 5 may require a targeted leaching of the neck region to improve cavern stability and lessen hanging string failure potential. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Well strains are significant and consequently future remedial actions may be necessary. Well strains certainly suggest the need for appropriate monitoring through a well-logging program. Subsidence is currently being monitored; there are no issues identified regarding damage from surface subsidence or horizontal strain to surface facilities.

More Details

Time integration of reacting flows with CSP tabulation

Debusschere, Bert D.; Najm, H.N.

This paper presents recent progress on the use of Computational Singular Perturbation (CSP) techniques for time integration of stiff chemical systems. The CSP integration approach removes fast time scales from the reaction system, thereby enabling integration with explicit time stepping algorithms. For further efficiency improvements, a tabulation strategy was developed to allow reuse of the relevant CSP quantities. This paper outlines the method and demonstrates its use on the simulation of hydrogen-air ignition.

More Details

Analytical energy and bandwidth model for compact silicon photonic microdisk resonators

Watts, Michael W.; Zortman, William A.

Microdisk resonators for use as low energy modulators in telecom and datacom applications have been fabricated using vertical PN junctions which operate in reverse bias. These devices have demonstrated the lowest energy/bit thus far. In this paper we show that the reverse biased PN junction diodes follow the analytical depletion approximation based on numerical simulation.

More Details

Development of a sensor for polypropylene degradation products

Dirk, Shawn M.; Sawyer, P.S.; Hochrein, James M.; Washburn, Cody M.; Howell, Stephen W.; Graf, Darin C.

This paper presents the development of a sensor to detect the oxidative and radiation induced degradation of polypropylene. Recently we have examined the use of crosslinked assemblies of nanoparticles as a chemiresistor-type sensor for the degradation products. We have developed a simple method that uses a siloxane matrix to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. These sensors were exposed with the use of a gas chromatography system to three previously identified polypropylene degradation products including 4-methyl-2-pentanone, acetone, and 2-pentanone. The limits of detection 210 ppb for 4-methy-2-pentanone, 575 ppb for 2-pentanone, and the LoD was unable to be determined for acetone due to incomplete separation from the carbon disulfide carrier.

More Details

Filled glass composites for sealing of solid oxide fuel cells

Garino, Terry J.; Tandon, Rajan T.

Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

More Details

Parallel phase model : a programming model for high-end parallel machines with manycores

Brightwell, Ronald B.; Heroux, Michael A.; Wen, Zhaofang W.

This paper presents a parallel programming model, Parallel Phase Model (PPM), for next-generation high-end parallel machines based on a distributed memory architecture consisting of a networked cluster of nodes with a large number of cores on each node. PPM has a unified high-level programming abstraction that facilitates the design and implementation of parallel algorithms to exploit both the parallelism of the many cores and the parallelism at the cluster level. The programming abstraction will be suitable for expressing both fine-grained and coarse-grained parallelism. It includes a few high-level parallel programming language constructs that can be added as an extension to an existing (sequential or parallel) programming language such as C; and the implementation of PPM also includes a light-weight runtime library that runs on top of an existing network communication software layer (e.g. MPI). Design philosophy of PPM and details of the programming abstraction are also presented. Several unstructured applications that inherently require high-volume random fine-grained data accesses have been implemented in PPM with very promising results.

More Details

OVIS 2.0 user%3CU%2B2019%3Es guide

Brandt, James M.; Gentile, Ann C.; Mayo, Jackson M.; Pebay, Philippe P.; Roe, Diana C.; Thompson, David C.; Wong, Matthew H.

This document describes how to obtain, install, use, and enjoy a better life with OVIS version 2.0. The OVIS project targets scalable, real-time analysis of very large data sets. We characterize the behaviors of elements and aggregations of elements (e.g., across space and time) in data sets in order to detect anomalous behaviors. We are particularly interested in determining anomalous behaviors that can be used as advance indicators of significant events of which notification can be made or upon which action can be taken or invoked. The OVIS open source tool (BSD license) is available for download at ovis.ca.sandia.gov. While we intend for it to support a variety of application domains, the OVIS tool was initially developed for, and continues to be primarily tuned for, the investigation of High Performance Compute (HPC) cluster system health. In this application it is intended to be both a system administrator tool for monitoring and a system engineer tool for exploring the system state in depth. OVIS 2.0 provides a variety of statistical tools for examining the behavior of elements in a cluster (e.g., nodes, racks) and associated resources (e.g., storage appliances and network switches). It calculates and reports model values and outliers relative to those models. Additionally, it provides an interactive 3D physical view in which the cluster elements can be colored by raw element values (e.g., temperatures, memory errors) or by the comparison of those values to a given model. The analysis tools and the visual display allow the user to easily determine abnormal or outlier behaviors. The OVIS project envisions the OVIS tool, when applied to compute cluster monitoring, to be used in conjunction with the scheduler or resource manager in order to enable intelligent resource utilization. For example, nodes that are deemed less healthy, that is, nodes that exhibit outlier behavior in some variable, or set of variables, that has shown to be correlated with future failure, can be discovered and assigned to shorter duration or less important jobs. Further, applications with fault-tolerant capabilities can invoke those mechanisms on demand, based upon notification of a node exhibiting impending failure conditions, rather than performing such mechanisms (e.g. checkpointing) at regular intervals unnecessarily.

More Details

Risks of transportation along various routes to the Nevada Test Site

Weiner, Ruth F.

Residents of Southern Nevada have expressed interest in the risks posed by transportation of radioactive materials to the Nevada Test Site for disposal. Residents of the urban sections of Clark County, in particular, are concerned because the trucks carrying this material pass through fairly densely populated areas on both primary and secondary highways. Excellent studies by the Desert Research Institute (Miller, et al, 2005; 2007) measured the external radiation doses from these trucks and provided a benchmark for estimating the doses sustained by the population along the transportation routes. The studies did not, however, assess the doses to the population in the event of an accident involving these trucks. The present study estimates doses to the population along these routes and to various individual receptors, both for routine, incident-free transportation and for transportation accidents.

More Details

Linearized theory of peridynamic states

Silling, Stewart A.

A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Frechet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincare's theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.

More Details

Site environmental report for 2008 Sandia National Laboratories, California

Larsen, Barbara L.

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

More Details

Development of joining processes and fabrication of US first wall qualification mockups for ITER

Proposed for publication in Fusion Engineering Design.

Puskar, J.D.; Watson, Roger M.; Ulrickson, M.A.

We report here the fabrication processes used to manufacture US Party Team First Wall Qualification Mockups along with the detailed microstructural characterization and mechanical properties of the Be/CuCrZr/316L HIP bonds. A companion submission to this conference describes details of the PMTF heat flux testing and the performance of the first US FWQM.

More Details

"Bottom-up" meets "top-down" : self-assembly to direct manipulation of nanostructures on length scales from atoms to microns

Swartzentruber, Brian S.

This document is the final SAND Report for the LDRD Project 102660 - 'Bottomup' meets 'top-down': Self-assembly to direct manipulation of nanostructures on length scales from atoms to microns - funded through the Strategic Partnerships investment area as part of the National Institute for Nano-Engineering (NINE) project.

More Details

An extensible operating system design for large-scale parallel machines

Riesen, Rolf; Ferreira, Kurt

Running untrusted user-level code inside an operating system kernel has been studied in the 1990's but has not really caught on. We believe the time has come to resurrect kernel extensions for operating systems that run on highly-parallel clusters and supercomputers. The reason is that the usage model for these machines differs significantly from a desktop machine or a server. In addition, vendors are starting to add features, such as floating-point accelerators, multicore processors, and reconfigurable compute elements. An operating system for such machines must be adaptable to the requirements of specific applications and provide abstractions to access next-generation hardware features, without sacrificing performance or scalability.

More Details

Sandia National Laboratories, California Environmental Management System Program Manual

Larsen, Barbara L.

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

More Details

BioXyce: An engineering platform for the study of cellular systems

IET Systems Biology

May, E.E.; Schiek, Richard S.

Researchers use constructs from the field of electrical engineering for the modelling and analysis of biological systems, but few exploit parallels between electrical and biological circuits for simulation purposes. The authors discuss the development of BioXyce, a circuit-based biological simulation platform that uses Xyce™, a large-scale electrical circuit simulator, as its simulation engine. BioXyce is capable of simulating whole-cell and multicellular systems. Simulation results for the central metabolism in Escherichia coli K12 and cellular differentiation in Drosophila sp. are presented. © The Institution of Engineering and Technology 2009.

More Details

Micro-scale components from high-strength nanostructured alloys

Materials Science and Engineering A

Saldana, C.; Yang, P.; Mann, J.B.; Moscoso, W.; Gill, D.D.; Chandrasekar, S.; Trumble, K.P.

A general approach for manufacturing of micro-scale components from high-strength, nanostructured materials is presented. The approach utilizes severe plastic deformation by large-strain extrusion machining to create the nanostructured material in a high-strength alloy system, and conventional micro-machining to produce the components. Manufacture of small-scale gears from nickel-based superalloy Inconel 718 is illustrated. © 2008 Elsevier B.V. All rights reserved.

More Details

Optimizing transient transport in materials having two scales of porosity

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

Nilson, Robert H.; Griffiths, Stewart K.

Porous materials having multiple scales of porosity afford the opportunity to combine the high surface area and functionality of nanopores with the superior charge/discharge characteristics of wider transport channels. However, the relative volume fractions assigned to nanopores and transport channels must be thoughtfully balanced because the introduction of transport channels reduces the volume available for nanopore functionality. In the present paper, the optimal balance between nanopore capacity and system response time is achieved by adjusting the aperture and spacing of a family of transport channels that provide access to adjacent nanopores during recharge/discharge cycles of materials intended for storage of gas or electric charge. A diffusive transport model is used to describe alternative processes of viscous gas flow, Knudsen gas flow, and ion diffusion or electromigration. The coupled transport equations for the nanopores and transport channels are linearized and solved analytically for a periodic variation in external gas pressure, ion concentration, or electric potential using a separation-of-variables approach in the complex domain. Optimization of these solutions yields closed-form expressions for channel apertures and spacing that provide maximum discharge of gas or electric charge for a fixed system volume and a desired discharge time. © 2009 The American Physical Society.

More Details

In situ transmission electron microscopy study on Nb-doped Pb(Zr 0.95Ti 00.5)O 3 ceramics

Microscopy Research and Technique

Qu, Weiguo; Tan, Xiaoli; Yang, Pin

The ferroelectric-to-ferroelectric phase transition between the high temperature (FE RH) and the low temperature (FE RL) rhombohedral phases in a Nb-doped Pb(Zr 0.95Ti 0.05)O 3 ceramic was investigated with transmission electron microscopy (TEM). Both bright field images and electron diffraction patterns were monitored as a function of temperature as well as dc electric field. A special TEM specimen holder that permits the application of electric voltage up to 600 V was employed for the study of electric field-induced phase transition. It was found that both [1/2](011) c- and [1/2](111)c-type superlattice diffraction spots were present at room temperature when the specimen was under no electric field. The [1/2](111) c-type superlattice spots were observed to disappear during heating above the phase transition temperature. When dc electric fields were applied at room temperature, the [1/2](111) c-type superlattice spots vanished as the electric field-induced FE RL → FE RH phase transition occurred. © 2009 Wiley-Liss, inc.

More Details

The process for integrating the NNSA knowledge base

Martinez, Elaine M.; Young, Christopher J.; Wilkening, Lisa K.

From 2002 through 2006, the Ground Based Nuclear Explosion Monitoring Research & Engineering (GNEMRE) program at Sandia National Laboratories defined and modified a process for merging different types of integrated research products (IRPs) from various researchers into a cohesive, well-organized collection know as the NNSA Knowledge Base, to support operational treaty monitoring. This process includes defining the KB structure, systematically and logically aggregating IRPs into a complete set, and verifying and validating that the integrated Knowledge Base works as expected.

More Details

On identifying the specular reflection of sunlight in earth-monitoring satellite data

Jackson, Dale C.; Hohlfelder, Robert J.; Longenbaugh, Randolph S.; Nelsen, James M.

Among the background signals commonly seen by Earth-monitoring satellites is the specular reflection of sunlight off of Earth's surface, commonly referred to as a glint. This phenomenon, involving liquid or ice surfaces, can result in the brief, intense illumination of satellite sensors appearing from the satellite perspective to be of terrestrial origin. These glints are important background signals to be able to identify with confidence, particularly in the context of analyzing data from satellites monitoring for transient surface or atmospheric events. Here we describe methods for identifying glints based on the physical processes involved in their production, including spectral fitting and polarization measurements. We then describe a tool that, using the WGS84 spheroidal Earth model, finds the latitude and longitude on Earth where a reflection of this type could be produced, given input Sun and satellite coordinates. This tool enables the user to determine if the surface at the solution latitude and longitude is in fact reflective, thus identifying the sensor response as a true glint or an event requiring further analysis.

More Details

Characterization of the mechanical behavior of wear surfaces on single crystal nickel by nanomechanical techniques

Journal of Materials Research

Cordill, Megan J.; Moody, Neville R.; Prasad, Somuri V.; Michael, Joseph R.; Gerberich, W.W.

In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, <001> and <011>. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns. © 2009 Materials Research Society.

More Details

Estimating IMU heading error from SAR images

Doerry, Armin

Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

More Details

Expansion into vacuum of a shocked tungsten carbide-epoxy mixture

Vogler, Tracy V.; Reinhart, William D.; Alexander, Charles S.

The behavior of a shocked tungsten carbide / epoxy mixture as it expands into a vacuum has been studied through a combination of experiments and simulations. X-ray radiography of the expanding material as well as the velocity measured for a stood-off witness late are used to understand the physics of the problem. The initial shock causes vaporization of the epoxy matrix, leading to a multi-phase flow situation as the epoxy expands rapidly at around 8 km/s followed by the WC particles moving around 3 km/s. There are also small amounts of WC moving at higher velocities, apparently due to jetting in the sample. These experiments provide important data about the multi-phase flow characteristics of this material.

More Details

Analyses to support development of risk-informed separation distances for hydrogen codes and standards

Houf, William G.; Middleton, Bobby M.

The development of a set of safety codes and standards for hydrogen facilities is necessary to ensure they are designed and operated safely. To help ensure that a hydrogen facility meets an acceptable level of risk, code and standard development organizations are tilizing risk-informed concepts in developing hydrogen codes and standards.

More Details

Assessment of wind turbine seismic risk : existing literature and simple study of tower moment demand

Veers, Paul S.

Various sources of risk exist for all civil structures, one of which is seismic risk. As structures change in scale, the magnitude of seismic risk changes relative to risk from other sources. This paper presents an introduction to seismic hazard as applied to wind turbine structures. The existing design methods and research regarding seismic risk for wind turbines is then summarized. Finally a preliminary assessment is made based on current guidelines to understand how tower moment demand scales as rated power increases. Potential areas of uncertainty in the application of the current guidelines are summarized.

More Details

Algorithmic properties of the midpoint predictor-corrector time integrator

Love, Edward L.; Scovazzi, Guglielmo S.; Rider, William J.

Algorithmic properties of the midpoint predictor-corrector time integration algorithm are examined. In the case of a finite number of iterations, the errors in angular momentum conservation and incremental objectivity are controlled by the number of iterations performed. Exact angular momentum conservation and exact incremental objectivity are achieved in the limit of an infinite number of iterations. A complete stability and dispersion analysis of the linearized algorithm is detailed. The main observation is that stability depends critically on the number of iterations performed.

More Details

Impact of switching to the ICRP-74 neutron flux-to-dose equivalent rate conversion factors at the Sandia National Laboratory Building 818 Neutron Source Range

Ward, Dann C.

Sandia National Laboratories (SNL) maintains a neutron calibration facility which supports the calibration, maintenance, and repair of Radiation Protection Instruments. The SNL neutron reference fields are calibrated using the following methodology: Fluence rate is initially established by calculation using the NIST traceable source emission rate (decay corrected). Correction factors for the effects of room return or scatter, and source anisotropy are then developed by using a suitable radiation transport code to model the geometry of the facility. The conventionally true neutron dose rates are then determined using the appropriate fluence-todose equivalent conversion coefficients at several reference positions. This report describes the impact on calculated neutron dose rates of switching from NCRP-38 to CRP-74 neutron flux-todose equivalent rate conversion factors. This switch is driven by recent changes to dosimetry requirements addressed in 10 CFR 835 (Occupational Radiation Protection).

More Details

Wind turbine reliability database update

Hill, Roger; Hines, Valerie A.; Stinebaugh, Jennifer S.; Veers, Paul S.

This report documents the status of the Sandia National Laboratories' Wind Plant Reliability Database. Included in this report are updates on the form and contents of the Database, which stems from a fivestep process of data partnerships, data definition and transfer, data formatting and normalization, analysis, and reporting. Selected observations are also reported.

More Details

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes

Park, Byoung P.; Ehgartner, Brian L.

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

More Details

Some guidance on preparing validation plans for the DART Full System Models

Gray, Genetha A.; Hills, Richard G.

Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generally applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.

More Details

Scalable synthesis of nanoporous palladium powders

Proposed for publication in the International Journal of Hydrogen Energy.

Robinson, David R.; Fares, Stephen J.; Ong, Markus D.; Langham, Mary E.; Tran, Kim T.; Cliff, Miles

Nanoporous palladium powders are synthesized on milligram to gram scales by chemical reduction of tetrachloro complexes by ascorbate in a concentrated aqueous surfactant at temperatures between -20 and 30 C. Particle diameters are approximately 50 nm, and each particle is perforated by 3 nm pores, as determined by electron tomography. These materials are of potential value for storage of hydrogen isotopes and electrical charge; producing them at large scales in a safe and efficient manner will help realize this. A slightly modified procedure also results in nanoporous platinum.

More Details

Energy and water sector policy strategies for drought mitigation

Vugrin, Eric D.; Vargas, Vanessa N.

Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

More Details
Results 73801–74000 of 96,771
Results 73801–74000 of 96,771