Publications

19 Results

Search results

Jump to search filters

The impact of active aerodynamic load control on fatigue and energy capture at low wind speed sites

European Wind Energy Conference and Exhibition 2009, EWEC 2009

Berg, Dale E.; Wilson, David G.; Barone, Matthew F.; Resor, Brian R.; Berg, Jonathan C.; Paquette, Joshua A.; Zayas, Jose R.

Active aerodynamic load control of wind turbine blades has been heavily researched for years by the wind energy research community and shows great promise for reducing turbine fatigue damage. One way to benefit from this technology is to choose to utilize a larger rotor on a turbine tower and drive train to realize increased turbine energy capture while keeping the fatigue damage of critical turbine components at the original levels. To assess this rotor-increase potential, Sandia National Laboratories and FlexSys Inc. performed aero/structural simulations of a 1.5MW wind turbine at mean wind speeds spanning the entire operating range. Moment loads at several critical system locations were post-processed and evaluated for fatigue damage accumulation at each mean wind speed. Combining these fatigue damage estimates with a Rayleigh wind-speed distribution yielded estimates of the total fatigue damage accumulation for the turbine. This simulation procedure was performed for both the turbine baseline system and the turbine system incorporating a rotor equipped with FlexSys active aerodynamic load control devices. The simulation results were post-processed to evaluate the decrease in the blade root flap fatigue damage accumulation provided by the active aero technology. The blade length was increased until the blade root flap fatigue damage accumulation values matched those of the baseline rotor. With the new rotor size determined, the additional energy capture potential was calculated. These analyses resulted in an energy capture increase of 11% for a mean wind speed of 6.5m/s.

More Details

Aerodynamic and aeroacoustic properties of flatback airfoils

46th AIAA Aerospace Sciences Meeting and Exhibit

Berg, Dale E.; Zayas, Jose R.

In 2002, Sandia National Laboratories (SNL) initiated a research program to demonstrate the use of carbon fiber in wind turbine blades and to investigate advanced structural concepts through the Blade Systems Design Study, known as the BSDS. One of the blade designs resulting from this program, commonly referred to as the BSDS blade, resulted from a systems approach in which manufacturing, structural and aerodynamic performance considerations were all simultaneously included in the design optimization. The BSDS blade design utilizes "flatback" airfoils for the inboard section of the blade to achieve a lighter, stronger blade. Flatback airfoils are generated by opening up the trailing edge of an airfoil uniformly along the camber line, thus preserving the camber of the original airfoil. This process is in distinct contrast to the generation of truncated airfoils, where the trailing edge the airfoil is simply cut off, changing the camber and subsequently degrading the aerodynamic performance. Compared to a thick conventional, sharp trailing-edge airfoil, a flatback airfoil with the same thickness exhibits increased lift and reduced sensitivity to soiling. Although several commercial turbine manufacturers have expressed interest in utilizing flatback airfoils for their wind turbine blades, they are concerned with the potential extra noise that such a blade will generate from the blunt trailing edge of the flatback section. In order to quantify the noise generation characteristics of flatback airfoils, Sandia National Laboratories has conducted a wind tunnel test to measure the noise generation and aerodynamic performance characteristics of a regular DU97-300-W airfoil, a 10% trailing edge thickness flatback version of that airfoil, and the flatback fitted with a trailing edge treatment. The paper describes the test facility, the models, and the test methodology, and provides some preliminary results from the test.

More Details

3X-100 blade field test

Zayas, Jose R.; Johnson, Wesley D.

In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

More Details

CX-100 and TX-100 blade field tests

Zayas, Jose R.; Jones, Perry L.

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

More Details

Accurate GPS Time-Linked data Acquisition System (ATLAS II) user's manual

Zayas, Jose R.; Jones, Perry L.; Ortiz-Moyet, Juan

The Accurate Time-Linked data Acquisition System (ATLAS II) is a small, lightweight, time-synchronized, robust data acquisition system that is capable of acquiring simultaneous long-term time-series data from both a wind turbine rotor and ground-based instrumentation. This document is a user's manual for the ATLAS II hardware and software. It describes the hardware and software components of ATLAS II, and explains how to install and execute the software.

More Details
19 Results
19 Results