Publications

9 Results

Search results

Jump to search filters

LDRD project final report : hybrid AI/cognitive tactical behavior framework for LVC

Hart, Brian E.; Hart, Derek H.; Little, Charles; Oppel, Frederick J.; Brannon, Nathan B.; Djordjevich Reyna, Donna D.; Linebarger, John M.; Parker, Eric P.

This Lab-Directed Research and Development (LDRD) sought to develop technology that enhances scenario construction speed, entity behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation. We investigated issues in both simulation architecture and behavior modeling. We developed path-planning technology that improves the ability to express intent in the planning task while still permitting an efficient search algorithm. An LVC simulation demonstrated how this enables 'one-click' layout of squad tactical paths, as well as dynamic re-planning for simulated squads and for real and simulated mobile robots. We identified human response latencies that can be exploited in parallel/distributed architectures. We did an experimental study to determine where parallelization would be productive in Umbra-based force-on-force (FOF) simulations. We developed and implemented a data-driven simulation composition approach that solves entity class hierarchy issues and supports assurance of simulation fairness. Finally, we proposed a flexible framework to enable integration of multiple behavior modeling components that model working memory phenomena with different degrees of sophistication.

More Details

Ultrasensitive directional microphone arrays for military operations in urban terrain

Okandan, Murat O.; Parker, Eric P.; Peterson, K.A.; Resnick, Paul J.; Serkland, Darwin K.

Acoustic sensing systems are critical elements in detection of sniper events. The microphones developed in this project enable unique sensing systems that benefit significantly from the enhanced sensitivity and extremely compact foot-print. Surface and bulk micromachining technologies developed at Sandia have allowed the design, fabrication and characterization of these unique sensors. We have demonstrated sensitivity that is only available in 1/2 inch to 1 inch studio reference microphones--with our devices that have only 1 to 2mm diameter membranes in a volume less than 1cm{sup 3}.

More Details

Analysis and control of distributed cooperative systems

Feddema, John T.; Schoenwald, David A.; Parker, Eric P.; Wagner, John S.

As part of DARPA Information Processing Technology Office (IPTO) Software for Distributed Robotics (SDR) Program, Sandia National Laboratories has developed analysis and control software for coordinating tens to thousands of autonomous cooperative robotic agents (primarily unmanned ground vehicles) performing military operations such as reconnaissance, surveillance and target acquisition; countermine and explosive ordnance disposal; force protection and physical security; and logistics support. Due to the nature of these applications, the control techniques must be distributed, and they must not rely on high bandwidth communication between agents. At the same time, a single soldier must easily direct these large-scale systems. Finally, the control techniques must be provably convergent so as not to cause undo harm to civilians. In this project, provably convergent, moderate communication bandwidth, distributed control algorithms have been developed that can be regulated by a single soldier. We have simulated in great detail the control of low numbers of vehicles (up to 20) navigating throughout a building, and we have simulated in lesser detail the control of larger numbers of vehicles (up to 1000) trying to locate several targets in a large outdoor facility. Finally, we have experimentally validated the resulting control algorithms on smaller numbers of autonomous vehicles.

More Details

Detection and Classification of Individual Airborne Microparticles using Laser Ablation Mass Spectroscopy and Multivariate Analysis

Field Analytical Chemistry

Parker, Eric P.

We are developing a method for the real-time analysis of airborne microparticles based on laser ablation mass spectroscopy. Airborne particles enter an ion trap mass spectrometer through a differentially-pumped inlet, are detected by light scattered from two CW laser beams, and sampled by a 10 ns excimer laser pulse at 308 nm as they pass through the center of the ion trap electrodes. After the laser pulse, the stored ions are separated by conventional ion trap methods. In this work thousands of positive and negative ion spectra were collected for eighteen different species: six bacteria, six pollen, and six particulate samples. The data were then averaged and analyzed using the Multivariate Patch Algorithm (MPA), a variant of traditional multivariate anal ysis. The MPA correctly identified all of the positive ion spectra and 17 of the 18 negative ion spectra. In addition, when the average positive and negative spectra were combined the MPA correctly identified all 18 species. Finally, the MPA is also able to identify the components of computer synthesized mixtures of the samples studied

More Details
9 Results
9 Results