Molecular Dynamics Models of the Electric Double Layer for Large Zeta Potentials
Abstract not provided.
Abstract not provided.
Society of Industrial and Applied Mathematics Journal on Optimization
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
Porous materials having multiple scales of porosity afford the opportunity to combine the high surface area and functionality of nanopores with the superior charge/discharge characteristics of wider transport channels. However, the relative volume fractions assigned to nanopores and transport channels must be thoughtfully balanced because the introduction of transport channels reduces the volume available for nanopore functionality. In the present paper, the optimal balance between nanopore capacity and system response time is achieved by adjusting the aperture and spacing of a family of transport channels that provide access to adjacent nanopores during recharge/discharge cycles of materials intended for storage of gas or electric charge. A diffusive transport model is used to describe alternative processes of viscous gas flow, Knudsen gas flow, and ion diffusion or electromigration. The coupled transport equations for the nanopores and transport channels are linearized and solved analytically for a periodic variation in external gas pressure, ion concentration, or electric potential using a separation-of-variables approach in the complex domain. Optimization of these solutions yields closed-form expressions for channel apertures and spacing that provide maximum discharge of gas or electric charge for a fixed system volume and a desired discharge time. © 2009 The American Physical Society.
Abstract not provided.
Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology 2008
Hierarchical nanoporous materials afford the opportunity to combine the high surface area and functionality of nanopores with the superior charge/discharge characteristics of wider transport channels. In the present paper we optimize the apertures and spacing of a family of transport channels providing access to a surrounding nanoporous matrix during recharge/discharge cycles of materials intended for storage of gas or electric charge. A diffusive transport model is used to describe alternative processes of viscous gas flow, Knudsen gas flow, and ion diffusion. The coupled transport equations for the nanoporous matrix and transport channels are linearized and solved analytically for a periodic variation in external gas pressure or ion density using a separation-of-variables approach in the complex domain. Channel apertures and spacing are optimized to achieve maximum inflow/outflow from the functional matrix material for a fixed system volume.
Physical Review Letters
Abstract not provided.
Galvanotechnik
Abstract not provided.
International Journal of Heat and Mass Transfer
Analytical and numerical solutions are presented for steady evaporating flow in open microchannels having a rectangular cross section and a uniform depth. The flow, driven by the axial gradient of capillary pressure, generally consists of an entry region where the meniscus is attached to the top corners of the channel followed by a jump-like transition to a corner-flow region in which the meniscus progressively recedes into the bottom corners of the channel. Illustrative numerical solutions are used to guide the derivation of an easily applied analytical approximation for the maximum sustainable heat flux or capillary limit. © 2005 Elsevier Ltd. All rights reserved.
Abstract not provided.
Abstract not provided.
Resist substrates used in the LIGA process must provide high initial bond strength between the substrate and resist, little degradation of the bond strength during x-ray exposure, acceptable undercut rates during development, and a surface enabling good electrodeposition of metals. Additionally, they should produce little fluorescence radiation and give small secondary doses in bright regions of the resist at the substrate interface. To develop a new substrate satisfying all these requirements, we have investigated secondary resist doses due to electrons and fluorescence, resist adhesion before exposure, loss of fine features during extended development, and the nucleation and adhesion of electrodeposits for various substrate materials. The result of these studies is a new anodized aluminum substrate and accompanying methods for resist bonding and electrodeposition. We demonstrate successful use of this substrate through all process steps and establish its capabilities via the fabrication of isolated resist features down to 6 {micro}m, feature aspect ratios up to 280 and electroformed nickel structures at heights of 190 to 1400 {micro}m. The minimum mask absorber thickness required for this new substrate ranges from 7 to 15 {micro}m depending on the resist thickness.
Electrophoresis
Numerical methods are employed to examine the work, electric power input, and efficiency of electrokinetic pumps at a condition corresponding to maximum pump work. These analyses employ the full Poisson-Boltzmann equations and account for both convective and conductive electric currents, including surface conductance. We find that efficiencies at this condition of maximum work depend on three dimensionless parameters, the normalized zeta potential, normalized Debye layer thickness, and a fluid property termed the Levine number indicating the nominal ratio of convective to conductive electric currents. Efficiencies at maximum work exhibit a maximum for an optimum Debye layer thickness when the zeta potential and Levine number are fixed. This maximum efficiency increases with the square of the zeta potential when the zeta potential is small, but reaches a plateau as the zeta potential becomes large. The maximum efficiency in this latter regime is thus independent of the zeta potential and depends only on the Levine number. Simple analytical expressions describing this maximum efficiency in terms of the Levine number are provided. Geometries of a circular tube and planar channel are examined. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.