Publications

6 Results
Skip to search filters

Landfill cover revegetation using organic amendments and cobble mulch in the arid southwest

Aguilar, Richard A.; Dwyer, Stephen F.; Reavis, Bruce A.; Newman, Gretchen C.

Cobble mulch and composted biosolids, greenwaste, and dairy manure were added to arid soil in an attempt to improve plant establishment and production, minimize erosion, increase evapotranspiration, and reduce leaching. Twenty-four plots (10 x 10 m) were established in a completely randomized block design (8 treatments, 3 plots per treatment). Treatments included (1) non-irrigated control, (2) irrigated control, (3) non-irrigated greenwaste compost (2.5 yd{sup 3} per plot), (4) irrigated greenwaste compost (5 yd{sup 3} per plot), (5) non-irrigated biosolids compost (2.5 yd{sup 3} per plot), (6) irrigated biosolids compost (5 yd{sup 3} per plot), (7) cobble-mulch, and (8) non-irrigated dairy manure compost (2.5 yd{sup 3} per plot). Soil samples were collected from each plot for laboratory analyses to assess organic matter contents, macro-nutrient levels and trace metal contents, and nitrogen mineralization potential. All plots were seeded similarly with approximately equal portions of cool and warm season native grasses. The organic composts (greenwaste, biosolids, dairy manure) added to the soils substantially increased soil organic matter and plant nutrients including total nitrogen and phosphorus. However, the results of a laboratory study of the soils' nitrogen mineralization potential after the application of the various composts showed that the soil nitrogen-supplying capability decreased to non-amended soil levels by the start of the second growing season. Thus, from the standpoint of nitrogen fertilizer value, the benefits of the organic compost amendments appear to have been relatively short-lived. The addition of biosolids compost, however, did not produce significant changes in the soils' copper, cadmium, lead, and zinc concentrations and thus did not induce adverse environmental conditions due to excessive heavy metal concentrations. Supplemental irrigation water during the first and second growing seasons did not appear to increase plant biomass production in the irrigated control plots over that produced in the non-irrigated control plots. This surprising result was probably due to the cumulative effects of other factors that influenced the initial establishment and production of plants in the plots (e.g., plant species competition, seed germination delay times, differences in nutrient release and availability). Variation within individual plots, and among the three replicate plots associated with each treatment, rendered many of the recorded differences in vegetation establishment and production statistically insignificant. However, after two complete growing seasons the highest total plant foliar cover and the greatest biomass production and plant species diversity occurred in the cobble-mulched plots. These results suggest that cobble-mulch may be the desired amendment in re-vegetated arid landfill covers if the principal objectives are to quickly establish vegetation cover, stabilize the site from erosion, and increase water usage by plants, thereby reducing the potential for leaching and contaminant movement from the landfill's waste-bearing zone.

More Details
6 Results
6 Results