Panel resonant behavior of wind turbine blades
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The mechanical properties of rare earth tritide films evolve as tritium decays into {sup 3}He, which forms bubbles that influence long-term film stability in applications such as neutron generators. Ultralow load nanoindentation, combined with finite-element modeling to separate the mechanical properties of the thin films from their substrates, has been used to follow the mechanical properties of model ErT{sub 2} films as they aged. The size of the growing {sup 3}He bubbles was followed with transmission electron microscopy, while ion beam analysis was used to monitor total T and {sup 3}He content. The observed behavior is divided into two regimes: a substantial increase in layer hardness but elasticity changed little over {approx}18 months, followed by a decrease in elastic stiffness and a modest decease in hardness over the final 24 months. We show that the evolution of properties is explained by a combination of dislocation pinning by the bubbles, elastic softening as the bubbles occupy an increasing fraction of the material, and details of bubble growth modes.
Abstract not provided.
In-situ transmission electron microscopy (TEM) straining experiments provide direct detailed observation of the deformation and failure mechanisms active at a length scale relevant to nanomaterials. This presentation will detail continued investigations into the active mechanisms governing high purity nanograined pulsed-laser deposited (PLD) nickel, as well as recent work into dislocation-particle interactions in nanostructured PLD aluminum-alumina alloys. Straining experiments performed on nanograined PLD free-standing nanograined Ni films with an engineered grain size distribution revealed that the addition of ductility with limited decrease in strength, reported in such metals, can be attributed to the simultaneous activity of three deformation mechanisms in front of the crack tip. At the crack tip, a grain agglomeration mechanism occurs where several nanograins appear to rotate, resulting in a very thin, larger grain immediately prior to failure. In the classical plastic zone in front of the crack tip, a multitude of mechanisms were found to operate in the larger grains including: dislocation pile-up, twinning, and stress-assisted grain growth. The region outside of the plastic zone showed signs of elasticity with limited indications of dislocation activity. The insight gained from in-situ TEM straining experiments of nanograined PLD Ni provides feedback for models of the deformation and failure in nanograined FCC metals, and suggests a greater complexity in the active mechanisms. The investigation into the deformation and failure mechanisms of FCC metals via in-situ TEM straining experiments has been expanded to the effect of hard particles on the active mechanisms in nanograined aluminum with alumina particles. The microstructures investigated were developed with varying composition, grain size, and particle distribution via tailoring of the PLD conditions and subsequent annealing. In order to develop microstructures suitable for in-situ deformation testing, in-situ TEM annealing experiments were performed, revealing the effect of nanoparticle precipitates on grain growth. These films were then strained in the TEM and the resulting microstructural evolution will be discussed. In-situ TEM straining experiments currently provide a wealth of information into plasticity within nanomaterials and can potentially, with further development of TEM and nanofabrication tools, provide even greater investigative capabilities.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Psychometrika
Abstract not provided.
Abstract not provided.
Abstract not provided.
Langmuir
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories (SNL) and the Nuclear Security Science and Policy Institute (NSSPI) at Texas A&M University are working with Middle East regional partners to set up a nuclear energy safety, safeguards, and security educational institute in the Gulf region. SNL and NSSPI, partnered with the Khalifa University of Science, Technology, and Research (KUSTAR), with suppot from its key nuclear stakeholders, the Emirates Nuclear Energy Corporation (ENEC), and the Federal Authority for Nuclear Regulation (FANR), plan to jointly establish the institute in Abu Dhabi. The Gulf Nuclear Energy Infrastructure Institute (GNEII) will be a KUSTAR-associated, credit-granting regional education program providing both classroom instruction and hands-on experience. The ultimate objective is for GNEII to be autonomous - regionally funded and staffed with personnel capable of teaching all GNEII courses five years after its inauguration. This is a strategic effort to indigenize a responsible nuclear energy culture - a culture shaped by an integrated understanding of nuclear safety, safeguards and security - in regional nuclear energy programs. GNEII also promotes international interests in developing a nuclear energy security and safety culture, increases collaboration between the nuclear energy security and safety communities, and helps to enhance global standards for nuclear energy technology in the Middle East.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories (SNL) and the Nuclear Security Science and Policy Institute (NSSPI) at Texas A&M University are working with Middle East regional partners to set up a nuclear energy safety, safeguards, and security educational institute in the Gulf region. SNL and NSSPI, partnered with the Khalifa University of Science, Technology, and Research (KUSTAR), with suppot from its key nuclear stakeholders, the Emirates Nuclear Energy Corporation (ENEC), and the Federal Authority for Nuclear Regulation (FANR), plan to jointly establish the institute in Abu Dhabi. The Gulf Nuclear Energy Infrastructure Institute (GNEII) will be a KUSTAR-associated, credit-granting regional education program providing both classroom instruction and hands-on experience. The ultimate objective is for GNEII to be autonomous - regionally funded and staffed with personnel capable of teaching all GNEII courses five years after its inauguration. This is a strategic effort to indigenize a responsible nuclear energy culture - a culture shaped by an integrated understanding of nuclear safety, safeguards and security - in regional nuclear energy programs. GNEII also promotes international interests in developing a nuclear energy security and safety culture, increases collaboration between the nuclear energy security and safety communities, and helps to enhance global standards for nuclear energy technology in the Middle East.
Abstract not provided.
Solar Energy Materials and Solar Cells
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.
Overall project goal: Obtain the fundamental surface chemistry knowledge needed for the design and optimal utilization of NOx trap catalysts, thereby helping to speed the widespread adoption of this technology. Relevance to VT Program goals: Effective, durable advanced aftertreatment systems for lean-burn engines must be available if the fuel economy advantages of these engines are to be realized. Specific current year objective: Identify and correct any deficiencies in the previously developed reaction mechanism describing normal storage/regeneration cycles, and complete development of a supplementary mechanism accounting for the effects of sulfation. A fundamental understanding of LNT chemistry is needed to realize the full potential of this aftertreatment technology, which could lead to greater use of fuel-efficient lean-burn engines. We have used a multi-tiered approach to developing an elementary chemical mechanism benchmarked against experimental data: (1) Simulate a set of steady flow experiments, with storage effects minimized, to infer a tentative mechanism for chemistry on precious metal sites (completed). (2) Simulate a set of long cycle experiments to infer a mechanism for NOx and oxygen storage sites while simultaneously finalizing precious metal chemistry (completed). (3) Simulate a simplified sulfation/desulfation protocol to obtain a supplementary set of reactions involving sulfur on all three kinds of sites (nearly completed). (4) Investigate the potential role of reductants other than CO and H{sub 2}. While simulation of isothermal experiments is the preferred way to extract kinetic parameters, simulation of realistic storage/regeneration cycles requires that exotherms be considered. Our ultimate goal is to facilitate improved designs for LNT-based aftertreatment systems and to assist in the development of improved catalysts.
Abstract not provided.
Theory and experiment suggest nanoscale hydride particles are destabilized relative to bulk, but the origin of this effect is unclear. Both size and local environment may play a role. The overall project objective is to achieve tunable thermodynamics for hydrogen storage materials by controlling nanoparticle size, composition, and environment. Key Goals for FY09 are: (1) Demonstrate and downselect infiltration methods; (2) Measure desorption kinetics for MgH{sub 2} and NaAlH{sub 4} nanoparticles and LiBH{sub 4} thin films; (3) Benchmark DFT and atomistic nanoparticle models using Quantum Monte Carlo (QMC); and (4) Quantify effect of nanoparticle size on {Delta}H{sub d}{sup o} using MgH{sub 2} as initial example. Summary of the key results are: (1) New highly ordered nanoporous templates enable systematic probing of nanoscale effects - Nanoscale NaAlH{sub 4} particles (as small as 1.5 nm diameter) exhibit improved H{sub 2} desorption kinetics relative to bulk and Preliminary data suggest MgH{sub 2} nanoparticle formation and possibly improved desorption kinetics; (2) Benchmarking DFT against QMC reveals significant errors that are non-systematic (H{sub 2} desorption energies underpredicted by as much as 30 kJ/mol); (3) QMC predicts greatest effect of size is for extremely small particles; e.g. (MgH{sub 2}){sub n}, n {le} 6 which is much smaller than predicted by Wolfe construction approach and observed in experiments and it suggests factors other than electronic structure (e.g. surrounding chemical environment) influence stability; (4) New NanoPEGS code developed and tested for MgH{sub 2} 2particles; and (5) New mass spec tool (STMBMS) reveals key details of hydrogen desorption process.
Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Our previously developed microkinetic model for lean NOx trap (LNT) storage and regeneration has been updated to address some longstanding issues, in particular the formation of N2O during the regeneration phase at low temperatures. To this finalized mechanism has been added a relatively simple (12-step) scheme that accounts semi-quantitatively for the main features observed during sulfation and desulfation experiments, namely (a) the essentially complete trapping of SO2 at normal LNT operating temperatures, (b) the plug-like sulfation of both barium oxide (NOx storage) and cerium oxide (oxygen storage) sites, (c) the degradation of NOx storage behavior arising from sulfation, (d) the evolution of H2S and SO2 during high temperature desulfation (temperature programmed reduction) under H2, and (e) the complete restoration of NOx storage capacity achievable through the chosen desulfation procedure.
Abstract not provided.
The goals of Lustre on Red Sky are: (1) provide home/projects/scratch Lustre file systems; (2) adhere to the Sun HPC stack; (3) implement software RAID on Sun provided JBODs; and (4) design for easy administration. Conclusions are: (1) software RAID includes additional risks and administration vs. hardware RAID solutions; (2) limited testing of hardware in these configurations make it ill-suited for rapid deployment in a production environment; and (3) Lustre has been a shining star on this machine, Red Sky users are pleased with its performance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.
Abstract not provided.
Abstract not provided.
This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Electrochemical capacitors based on redox-active metal oxides show great promise for many energy-storage applications. These materials store charge through both electric double-layer charging and faradaic reactions in the oxide. The dimensions of the oxide nanomaterials have a strong influence on the performance of such capacitors. Not just due to surface area effects, which influence the double-layer capacitance, but also through bulk electrical and ionic conductivities. Ni(OH)2 is a prime candidate for such applications, due to low cost and high theoretical capacity. We have examined the relationship between diameter and capacity for Ni/Ni(OH)2 nanorods. Specific capacitances of up to 511 F/g of Ni were recorded in 47 nm diameter Ni(OH)2 nanorods.
Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.
An uncertainty quantification (UQ) analysis is performed on the fuel regression rate model within SIERRA/Fuego by comparing to a series of hydrocarbon tests performed in the Thermal Test Complex. The fuels used for comparison for the fuel regression rate model include methanol, ethanol, JP8, and heptane. The recently implemented flamelet combustion model is also assessed with a limited comparison to data involving measurements of temperature and relative mole fractions within a 2-m diameter methanol pool fire. The comparison of the current fuel regression rate model to data without UQ indicates that the model over predicts the fuel regression rate by 65% for methanol, 63% for ethanol, 95% for JP8, and 15% for heptane. If a UQ analysis is performed incorporating a range of values for transmittance, reflectance, and heat flux at the surface the current model predicts fuel regression rates within 50% of measured values. An alternative model which uses specific heats at inlet and boiling temperatures respectively and does not approximate the sensible heat is also compared to data. The alternative model with UQ significantly improves the comparison to within 25% for all fuels except heptane. Even though the proposed alternative model provides better agreement to data, particularly for JP8 and ethanol (within 15%), there are still outstanding issues regarding significant uncertainties which include heat flux gauge measurement and placement, boiling at the fuel surface, large scale convective motion within the liquid, and semi-transparent behavior.
Abstract not provided.
Abstract not provided.
In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report provides details on a technique to describe molecules on a computer, called Signature, as well as the computer-aided molecule design algorithm built around Signature. Two applications are provided of the CAMD algorithm with Signature. The first describes the design of green solvents based on data in the GlaxoSmithKline (GSK) Solvent Selection Guide. The second provides novel non-steroidal glucocorticoid receptor ligands with some optimally predicted properties. In addition to using the CAMD algorithm with Signature, it is demonstrated how to employ Signature in a high-throughput screening study. Here, after classifying both active and inactive inhibitors for the protein Factor XIa using Signature, the model developed is used to screen a large, publicly-available database called PubChem for the most active compounds.
The Python Papers
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.
IEEE Antennas and Wireless Propagation Letters
Abstract not provided.
The summary of this presentation is: (1) Barrier walls are used to reduce setbacks by factor of 2; (2) We found no ignition-timing vs. over-pressure sensitivities for jet flow obstructed by barrier walls; (3) Cryogenic vapor cloud model indicates hazard length scales exceed the room-temperature release; validation experiments are required to confirm; (4) Light-up maps developed for lean limit ignition; flammability factor model provides good indication of ignition probability; and (5) Auto-ignition is enhanced by blunt-body obstructions - increases gas temperature and promotes fuel/air mixing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Angewandt Chemie
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ASME Journal of Fuel Cell Science and Technology
Abstract not provided.
ASME Journal of Fuel Cell Science and Technology
Abstract not provided.
Journal of Applied Polymer Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Extreme-scale parallel systems will require alternative methods for applications to maintain current levels of uninterrupted execution. Redundant computation is one approach to consider, if the benefits of increased resiliency outweigh the cost of consuming additional resources. We describe a transparent redundancy approach for MPI applications and detail two different implementations that provide the ability to tolerate a range of failure scenarios, including loss of application processes and connectivity.We compare these two approaches and show performance results from micro-benchmarks that bound worst-case message passing performance degradation.We propose several enhancements that could lower the overhead of providing resiliency through redundancy.
Abstract not provided.
Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.
This paper introduces a new analytical 'stretch' function that accurately predicts the flux distribution from on-axis point-focus collectors. Different dish sizes and slope errors can be assessed using this analytical function with a ratio of the focal length to collector diameter fixed at 0.6 to yield the maximum concentration ratio. Results are compared to data, and the stretch function is shown to provide more accurate flux distributions than other analytical methods employing cone optics.
A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoft Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Prediction is defined in the American Heritage Dictionary as follows: 'To state, tell about, or make known in advance, especially on the basis of special knowledge.' What special knowledge do we demand of modeling and simulation to assert that we have a predictive capability for high consequence applications? The 'special knowledge' question can be answered in two dimensions: the process and rigor by which modeling and simulation is executed and assessment results for the specific application. Here we focus on the process and rigor dimension and address predictive capability in terms of six attributes: (1) geometric and representational fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) validation, and (6) uncertainty quantification. This presentation will demonstrate through mini-tutorials, simple examples, and numerous case studies how each attribute creates opportunities for errors, biases, or uncertainties to enter into simulation results. The demonstrations will motivate a set of practices that minimize the risk in using modeling and simulation for high-consequence applications while defining important research directions. It is recognized that there are cultural, technical, infrastructure, and resource barriers that prevent analysts from performing all analyses at the highest levels of rigor. Consequently, the audience for this talk is (1) analysts, so they can know what is expected of them, (2) decision makers, so they can know what to expect from modeling and simulation, and (3) the R&D community, so they can address the technical and infrastructure issues that prevent analysts from executing analyses in a practical, timely, and quality manner.
Industrial&Engineering Chemistry Research
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Why plan beyond the flu: (1) the installation may be the target of bioterrorism - National Laboratory, military base collocated in large population center; and (2) International Airport - transport of infectious agents to the area - Sandia is a global enterprise and staff visit many foreign countries. In addition to the Pandemic Plan, Sandia has developed a separate Disease Response Plan (DRP). The DRP addresses Category A, B pathogens and Severe Acute Respiratory Syndrome (SARS). The DRP contains the Cities Readiness Initiative sub-plan for disbursement of Strategic National Stockpile assets.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.
Abstract not provided.
The current packaging of most HC-3 radioactive materials at SNL/NM do not meet DOT requirements for offsite shipment. SNL/NM is transporting HC-3 quantities of radioactive materials from their storage locations in the Manzano Nuclear Facilities bunkers to facilities in TA-5 to be repackaged for offsite shipment. All transportation of HC-3 rad material by SNL/NM is onsite (performed within the confines of KAFB). Transport is performed only by the Regulated Waste/Nuclear Material Disposition Department. Part of the HC3T process is to provide the CAT with the following information at least three days prior to the move: (1) RFt-Request for transfer; (2) HC3T movement report; (3) Radiological survey; and (4) Transportation Route Map.
The Z machine is a fast pulsed-power machine at Sandia National Laboratories designed to deliver a 100-ns rise-time, 26-MA pulse of electrical current to Z-pinch experiments for research in radiation effects and inertial confinement fusion. Since 1999, Z has also been used as a current source for magnetically driven, high-pressure, high-strain-rate experiments in condensed matter. In this mode, Z produces simultaneous planar ramp-wave loading, with rise times in the range of 300-800 ns and peak longitudinal stress in the range of 4-400 GPa, of multiple macroscopic material samples. Control of the current-pulse shape enables shockless propagation of these ramp waves through samples 1-2 mm thick to measure quasi-isentropic compression response, as well as shockless acceleration of copper flyer plates to at least 28 km/s for impact experiments to measure ultra-high-pressure (-3000 GPa) shock compression response. This presentation will give background on the relevant physics, describe the experimental technique, and show recent results from both types of experiments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion&Flame
Abstract not provided.
Combustion Theory and Modelling
Abstract not provided.
Abstract not provided.
Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.
EPJD: European Journal of Physics D
Abstract not provided.
Abstract not provided.
The development of thin batteries has presented several interesting problems which are not seen in traditional battery sizes. As the size of a battery reaches a minimum, the usable capacity of the battery decreases due to the fact that the major constituent of the battery becomes the package and separator. As the size decreases, the volumetric contribution from the package and separator increases. This can result in a reduction of capacity from these types of batteries of nearly all of the available power. The development of a method for directly printing the battery layers, including the package, in place would help to alleviate this problem. The technology used in this paper to directly print battery components is known as robocasting and is capable of direct writing of slurries in complex geometries. This method is also capable of conformally printing on three dimensional surfaces, opening up the possibility of novel batteries based on tailoring battery footprints to conform to the available substrate geometry. Interfacial resistance can also be reduced by using the direct write method. Each layer is printed in place on the battery stack instead of being stacked one at a time. This ensures an intimate contact and seal at every interface within the cell. By limiting the resistance at these interfaces, we effectively help increase the useable capacity of our battery through increase transport capability. We have developed methodology for printing several different separator materials for use in a lithium cell. When combined with a printable cathode comprised of LiFePO{sub 4} (as seen in Figure 1) and a lithium anode, our battery is capable of delivering a theoretical capacity of 170 mAh g{sup -1}. This capacity is diminished by transport phenomena within the cell which limit the transport rate of the lithium ions during the discharge cycle. The material set chosen for the printable separator closely resemble those used in commercially available separators in order to keep the transport rates high within the cell during charge and discharge. In order to evaluate the effect of each layer being printed using the robocasting technique, coin cells using printed separator materials were assembled and cycled vs. Li/Li{sup +}. This allows for the standardization of a test procedure in order to evaluate each layer of a printed cell one layer at a time. A typical charge/discharge curve can be seen in Figure 2 using a printed LiFePO{sub 4} cathode and a printed separator with a commercial Celgard separator. This experiment was run to evaluate the loss in capacity and slowdown of transport within the cell due to the addition of the printed separator. This cell was cycled multiple times and showed a capacity of 75 mAh/g. The ability for this cell to cycle with good capacity indicates that a fully printable separator material is viable for use in a full lithium cell due to the retention of capacity. Most of the fully printed cathode and separator cells exhibit working capacities between 65 and 95 mAh/g up to this point. This capacity should increase as the efficiency of the printed separator increases. The ability to deposit each layer within the cell allows for intimate contact of each layer and ensures for a reduction of interfacial impedance of each layer within the cell. The overall effect of printing multiple layers within the cell will be an overall increase in the ionic conductivity during charge and discharge cycles. Several different polymer membranes have been investigated for use as a printed separator. The disadvantage of using polymer separators or solid electrolyte batteries is that they have relatively low conductivities at room temperature (10{sup -6} - 10{sup -8} S cm{sup -1}). This is orders of magnitude lower than the typically accepted 10{sup -3} S cm{sup -1} needed for proper ionic transport during battery discharge Because of their low conductivity, typical polymer separators such as polyethylene oxide (PEO) have a normal operational temperature well above ambient. At elevated temperature the conductivity of these polymers increases. These polymer membranes are, however, ideal for printable applications due to their ease of fabrication using the robocasting process and their ability to conform to surfaces uniformly. While the ability to print cathodes and separators is advantageous as a technology, several of the components still need to be fully optimized. The overall design for the full printed lithium cell can be seen in Figure 3. The printed cathode and separator will interface with a printed anode and current collector, using the LiFePO{sub 4} cycling to plate out a metallic lithium anode on the current collector during cycling. The ability to print every layer of the cell conformally using the robocasting technique will allow for ultimate flexibility in the application of a printed battery.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Analysts working at the International Data Centre in support of treaty monitoring through the Comprehensive Nuclear-Test-Ban Treaty Organization spend a significant amount of time reviewing hypothesized seismic events produced by an automatic processing system. When reviewing these events to determine their legitimacy, analysts take a variety of approaches that rely heavily on training and past experience. One method used by analysts to gauge the validity of an event involves examining the set of stations involved in the detection of an event. In particular, leveraging past experience, an analyst can say that an event located in a certain part of the world is expected to be detected by Stations A, B, and C. Implicit in this statement is that such an event would usually not be detected by Stations X, Y, or Z. For some well understood parts of the world, the absence of one or more 'expected' stations - or the presence of one or more 'unexpected' stations - is correlated with a hypothesized event's legitimacy and to its survival to the event bulletin. The primary objective of this research is to formalize and quantify the difference between the observed set of stations detecting some hypothesized event, versus the expected set of stations historically associated with detecting similar nearby events close in magnitude. This Station Set Residual can be quantified in many ways, some of which are correlated with the analysts determination of whether or not the event is valid. We propose that this Station Set Residual score can be used to screen out certain classes of 'false' events produced by automatic processing with a high degree of confidence, reducing the analyst burden. Moreover, we propose that the visualization of the historically expected distribution of detecting stations can be immediately useful as an analyst aid during their review process.
Abstract not provided.
Abstract not provided.
To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D (SAndia LoS Alamos) version 1.4, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is > 55%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with {approx}400 processors. Resolution of our model is assessed using a variation of the standard checkerboard method, as well as by directly estimating the diagonal of the model resolution matrix based on the technique developed by Bekas, et al. We compare the travel-time prediction and location capabilities of this model over standard 1D models. We perform location tests on a global, geographically-distributed event set with ground truth levels of 5 km or better. These events generally possess hundreds of Pn and P phases from which we can generate different realizations of station distributions, yielding a range of azimuthal coverage and proportions of teleseismic to regional arrivals, with which we test the robustness and quality of relocation. The SALSA3D model reduces mislocation over standard 1D ak135, especially with increasing azimuthal gap. The 3D model appears to perform better for locations based solely or dominantly on regional arrivals, which is not unexpected given that ak135 represents a global average and cannot therefore capture local and regional variations.
Recently, Sandia National Laboratories and General Motors cooperated on the development of the Biofuels Deployment Model (BDM) to assess the feasibility, implications, limitations, and enablers of producing 90 billion gallons of ethanol per year by 2030. Leveraging the past investment, a decision support model based on the BDM is being developed to assist investors, entrepreneurs, and decision makers in evaluating the costs and benefits associated with biofuels development in the U.S.-Mexico border region. Specifically, the model is designed to assist investors and entrepreneurs in assessing the risks and opportunities associated with alternative biofuels development strategies along the U.S.-Mexico border, as well as, assist local and regional decision makers in understanding the tradeoffs such development poses to their communities. The decision support model is developed in a system dynamics framework utilizing a modular architecture that integrates the key systems of feedstock production, transportation, and conversion. The model adopts a 30-year planning horizon, operating on an annual time step. Spatially the model is disaggregated at the county level on the U.S. side of the border and at the municipos level on the Mexican side. The model extent includes Luna, Hildalgo, Dona Anna, and Otero counties in New Mexico, El Paso and Hudspeth counties in Texas, and the four munipos along the U.S. border in Chihuahua. The model considers a variety of feedstocks; specifically, algae, gitropha, castor oil, and agricultural waste products from chili and pecans - identifying suitable lands for these feedstocks, possible yields, and required water use. The model also evaluates the carbon balance for each crop and provides insight into production costs including labor demands. Finally, the model is fitted with an interactive user interface comprised of a variety of controls (e.g., slider bars, radio buttons), descriptive text, and output graphics allowing stakeholders to directly explore the tradeoffs between alternative biofuels development scenarios.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.