Publications

Results 49901–50000 of 99,299

Search results

Jump to search filters

A set of manufactured solutions for coupled radiation (SPN) and conduction problems

Proceedings of the Thermal and Fluids Engineering Summer Conference

Tencer, John T.; Okusanya, Tolulope O.; Hetzler, Adam C.

The simplified spherical harmonics (SPn) approximation to the radiative transport equation (RTE) is a computationally efficient deterministic solution method that may be derived either as an asymptotic correction to the diffusion approximation or as a 3D analog to the 1D spherical harmonics (Pn) or discrete ordinates (Sn) approximations. It is used to approximate the effects of participating media radiation. In order to trust the output of a given implementation for a high consequence application, code verification activities must be undertaken to build confidence in the results generated. The method of manufactured solutions is a widely accepted code verification technique in which a solution is assumed and arbitrary source terms are derived such that the code should converge to the prescribed solution. This convergence rate is then confirmed. In this paper we consider the set of coupled PDEs representative of radiation/conduction problems. The RTE is approximated using the “canonical” SPn equations with Mark boundary conditions. All boundaries are diffuse and emissivities range from 0 to 1. A set of manufactured solutions are presented for 1D-planar, 2D-planar, 2D-axisymmetric, and 3D-radially symmetric geometries. These manufactured solutions are used to verify the convergence rate of the conduction and simplified spherical harmonics approximations implemented in Sierra Aria, a highly scalable thermal analysis code.

More Details

On the scalability of the Albany/FELIX first-order stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets

Procedia Computer Science

Tezaur, Irina K.; Tuminaro, Raymond S.; Perego, Mauro; Salinger, Andrew G.; Price, Stephen F.

We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditioner results in faster linear solve times but the ILU preconditioner exhibits better scalability. A weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. Here, we show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.

More Details

Bayesian calibration of a RANS model with a complex response surface-a case study with jet-in-crossflow configuration

45th AIAA Fluid Dynamics Conference

Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; Dechant, Lawrence

We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the estimation. Methods such as Markov chain Monte Carlo construct the PDF by sampling, and consequently a quick-running surrogate is used instead of the RANS simulator. The surrogate can be very difficult to design if the model’s response i.e., the dependence of the calibration variable (the observable) on the parameters being estimated is complex. We show how the training data used to construct the surrogate models can also be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the “well-behaved region”. This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k-ε parameters C = (Cμ, Cε2, Cε1) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the calibration data. We also check the limit of applicability of the calibration by testing at an off-calibration point.

More Details

How laser damage resistance of HfO2/SiO2 optical coatings is affected by embedded contamination caused by pausing the deposition process

Proceedings of SPIE - The International Society for Optical Engineering

Field, Ella; Bellum, John C.; Kletecka, Damon

Reducing contamination is essential for producing optical coatings with high resistance to laser damage. One aspect of this principle is to make every effort to limit long interruptions during the coating's deposition. Otherwise, contamination may accumulate during the pause and become embedded in the coating after the deposition is restarted, leading to a lower laser-induced damage threshold (LIDT). However, pausing a deposition is sometimes unavoidable, despite our best efforts. For example, a sudden hardware or software glitch may require hours or even overnight to solve. In order to broaden our understanding of the role of embedded contamination on LIDT, and determine whether a coating deposited under such non-ideal circumstances could still be acceptable, this study explores how halting a deposition overnight impacts the LIDT, and whether ion cleaning can be used to mitigate any negative effects on the LIDT. The coatings investigated are a beam splitter design for high reflection at 1054 nm and high transmission at 527 nm, at 22.5° angle of incidence in S-polarization. LIDT tests were conducted in the nanosecond regime.

More Details

Operation, maintenance, and monitoring of large-diameter caverns in oil storage facilities in domal salt

Mechanical Behavior of Salt VIII - Proceedings of the Conference on Mechanical Behavior of Salt, SALTMECH VIII

Sobolik, Steven; Lord, Anna S.

This paper presents a study of operational and abandoned large-diameter caverns and their long-term implications for oil storage facilities in domal salt. Two caverns at the U.S. Strategic Petroleum Reserves West Hackberry site, Caverns 6 and 9, present concerns due to their large diameters, unusual shapes and close proximity to each other. The Bryan Mound site has three caverns whose unusual shapes and dimensions have caused concerns about cavern collapse, sinkhole formation, and loss of accessibility to stored oil. This report presents a case study of how historical field data, computational geomechanical analyses, and the implementation of new instrumentation and historical data analyses may be used to develop site operation and monitoring plans for these caverns.

More Details

Design of a physical point-absorbing WEC model on which multiple control strategies will be tested at large scale in the MASK basin

Proceedings of the International Offshore and Polar Engineering Conference

Bull, Diana L.; Coe, Ryan G.; Monda, Mark J.; Dullea, Kevin; Bacelli, Giorgio; Patterson, David C.

A new multi-year effort has been launched by the Department of Energy to validate the extent to which control strategies can increase the power produced by resonant wave energy conversion (WEC) devices. This paper describes the design of a WEC device to be employed by this program in the development and assessment of WEC control strategies. The operational principle of the device was selected to provide a test-bed for control strategies, in which a specific control strategies effectiveness and the parameters on which its effectiveness depends can be empirically determined. Numerical design studies were employed to determine the device geometry, so as to maximize testing opportunities in the Maneuvering and Seakeeping (MASK) Basin at the Naval Surface Warfare Centers David Taylor Model Basin. Details on the physical model including specific components and model fabrication methodologies are presented. Finally the quantities to be measured and the mechanisms of measurement are listed.

More Details

Reactivity effects at the Mayak Production Association, January 2, 1958 criticality accident using Serpent 2 and OpenFOAM

ICNC 2015 - International Conference on Nuclear Criticality Safety

Vega, Richard M.; Lane, Taylor; Miller, John; Schwers, Norman F.

The process nuclear criticality accident that occurred at the Mayak Production Association (Chelyabinsk-40) on January 2, 1958 involving a vessel of uranyl nitrate solution claimed the lives of three workers and left a fourth worker with continuing health problems. There are a myriad of uncertain parameters involved with this accident: What was the molarity of the solution? How much solution was in the vessel at the time of the accident? In what position was the vessel and the solution when it went critical? How important was the impact of reflection due to the workers and/or the floor? These uncertain parameters have made this accident particularly difficult to analyze in the past. This work aims to lower the uncertainty on some of these parameters. A most-probable solution composition is determined by comparing literature on the physical properties of uranyl nitrate solutions to those presented in LA-13638 [1], which describes the accident in question. Using this most-probable solution, the main contributions to the reactivity of the system and hence the eventual accident, are identified through Serpent 2 and OpenFOAM analyses. Serpent 2, a Monte Carlo software tool, is used to perform calculations of the reactivity effects of lowering the vessel toward the floor and the reactivity added by the close proximity of workers. OpenFOAM, a C++ partial differential equation solver toolkit, is used to simulate the fluid inside the vessel as the vessel is tipped. This is done by treating the solution and air inside the vessel as two incompressible, isothermal, and immiscible fluids using a volume of fluid (VoF) approach. The goal of this approach is simply to track the interface between the two fluids, and hence give an accurate description of the geometrical structure of the solution as the vessel is tipped. These two unique tools are then coupled to provide a time-dependent flow simulation to study the effect that the changing geometrical structure had on the criticality of the system, which is novel to the criticality safety field. This work provides a more accurate picture of the accident going forward. Key Words: Serpent 2, OpenFOAM, multi-physics, prompt neutron excursion, nuclear criticality safety accident, process condition change.

More Details

Temporal evolution of turbulent eddies in a compressible jet in crossflow measured using pulse-burst PIV

45th AIAA Fluid Dynamics Conference

Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell; Pruett, Brian

sPulse-burst PIV has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet mixing layer and can be used to identify the turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely-spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a spacing about three times the separation between paired vortices, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to convect through the field of view at repeatable spacings. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow.

More Details

Modal decomposition of pressure data in cavity flows

45th AIAA Fluid Dynamics Conference

Casper, Katya M.; Arunajatesan, Srinivasan

The flow over aircraft bays exhibits many characteristics of cavity flows, namely resonant pressures that can create high structural loading. An extensive dataset of pressure measurements within both simple and complex cavities was previously obtained and analyzed using power-spectral densities, coherence levels, and cross correlations between sensor pairs within the cavity. More in-depth analysis of the flow structure is studied here using modal decomposition techniques. Both Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) were applied to the experimental and computational results within a simple rectangular cavity. POD was able to show that the cavity modes are coherent across the cavity width. Only higher modes that were associated with more turbulent fluctuations exhibited spanwise variations. These were concentrated at the aft end of the cavity. DMD was able to isolate structures associated with single frequencies in the flow. At the Rossiter frequencies, coherent structures across the front cavity width were found, while more complex shapes were observed at the cavity rear, consistent with the POD analysis. Additional DMD modes in between the dominant Rossiter frequencies also appeared. These additional modes were associated with a low-frequency modulation of the cavity tones.

More Details

Experiments with partially-reflected square-pitched arrays of water-moderated 6.9 percent enriched UO2 fuel rods

ICNC 2015 - International Conference on Nuclear Criticality Safety

Harms, Gary A.; Miller, Allison D.; Ford, John T.; Campbell, Rafe

The Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories was designed to provide benchmark criticality and reactor physics data for water-moderated pin-fueled nuclear reactor cores in the 5 to 10 percent enrichment range. Approach-to-critical experiments were performed on nineteen partially-reflected arrays of pure water-moderated and -reflected fuel rods with a fuel-to-water volume ratio of 0.67. Those configurations are described and the results of the measurements are reported in this paper.

More Details

A multi-dimensional finite element based solver for decomposing and non-decomposing thermal protection systems

45th AIAA Thermophysics Conference

Howard, Micah; Blackwell, Bennie F.

A multi-dimensional finite element solver for decomposing and non-decomposing ablating materials has recently been developed and is discussed in this paper. The underlying mathematical and material models are presented along with its discretization via the finite element method. The governing equations and solution algorithm is based on the one-dimensional control-volume finite element method (CVFEM) Chaleur code, a successful ablation code in use at Sandia National Labs, and this paper represents a multi-dimensional extension of Chaleur. The Equilibrium Surface Thermochemistry (EST) code, an equilibrium gas/surface thermochemistry code for decomposing and non-decomposing materials that was previously developed by the authors is used in conjunction with this new multi-dimensional ablation code to provide ablation thermochemistry information (i.e. B0c and enthalpy tables). This new multi-dimensional ablation response code is first applied to solve two established code-to-code comparison problems with tabular aeroheating data. Another aspect of this work has been to develop the ability to couple CFD-based aeroheating data to the ablation code as a spatial and time variant boundary condition. Towards this end, we have established a one-way passing of aeroheating data from a hypersonic CFD code to the ablation code. We then examine the problem of simulating the ablation response of non-decomposing and decomposing materials in two arc-jet facilities.

More Details

MapReduce SVM game

Procedia Computer Science

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

Despite technological advances making computing devices faster, smaller, and more prevalent in today's age, data generation and collection has outpaced data processing capabilities. Simply having more compute platforms does not provide a means of addressing challenging problems in the big data era. Rather, alternative processing approaches are needed and the application of machine learning to big data is hugely important. The MapReduce programming paradigm is an alternative to conventional supercomputing approaches, and requires less stringent data passing constrained problem decompositions. Rather, MapReduce relies upon defining a means of partitioning the desired problem so that subsets may be computed independently and recom-bined to yield the net desired result. However, not all machine learning algorithms are amenable to such an approach. Game-theoretic algorithms are often innately distributed, consisting of local interactions between players without requiring a central authority and are iterative by nature rather than requiring extensive retraining. Effectively, a game-theoretic approach to machine learning is well suited for the MapReduce paradigm and provides a novel, alternative new perspective to addressing the big data problem. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in a distributed manner, and show an illustrative example of applying this algorithm.

More Details

Canaries in a coal mine: Using application-level checkpoints to detect memory failures

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Widener, Patrick; Ferreira, Kurt; Levy, Scott L.N.; Fabian, Nathan

Memory failures in future extreme scale applications are a significant concern in the high-performance computing community and have attracted much research attention. We contend in this paper that using application checkpoint data to detect memory failures has potential benefits and is preferable to examining application memory. To support this contention, we describe the application of machine learning techniques to evaluate the veracity of checkpoint data. Our preliminary results indicate that supervised decision tree machine learning approaches can effectively detect corruption in restart files, suggesting that future extreme-scale applications and systems may benefit from incorporating such approaches in order to cope with memory failues.

More Details

A multi-dimensional finite element based solver for decomposing and non-decomposing thermal protection systems

45th AIAA Thermophysics Conference

Howard, Micah; Blackwell, Bennie F.

A multi-dimensional finite element solver for decomposing and non-decomposing ablating materials has recently been developed and is discussed in this paper. The underlying mathematical and material models are presented along with its discretization via the finite element method. The governing equations and solution algorithm is based on the one-dimensional control-volume finite element method (CVFEM) Chaleur code, a successful ablation code in use at Sandia National Labs, and this paper represents a multi-dimensional extension of Chaleur. The Equilibrium Surface Thermochemistry (EST) code, an equilibrium gas/surface thermochemistry code for decomposing and non-decomposing materials that was previously developed by the authors is used in conjunction with this new multi-dimensional ablation code to provide ablation thermochemistry information (i.e. B0c and enthalpy tables). This new multi-dimensional ablation response code is first applied to solve two established code-to-code comparison problems with tabular aeroheating data. Another aspect of this work has been to develop the ability to couple CFD-based aeroheating data to the ablation code as a spatial and time variant boundary condition. Towards this end, we have established a one-way passing of aeroheating data from a hypersonic CFD code to the ablation code. We then examine the problem of simulating the ablation response of non-decomposing and decomposing materials in two arc-jet facilities.

More Details

Wave speed propagation measurements on highly attenuative heated materials

Physics Procedia

Moore, David G.; Ober, Curtis C.; Rodacy, Philip J.; Nelson, Ciji

Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. Both experimental and analytical data are compared and presented.

More Details

Formal metrics for large-scale parallel performance

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Moreland, Kenneth D.; Oldfield, Ron

Performance measurement of parallel algorithms is well studied and well understood. However, a flaw in traditional performance metrics is that they rely on comparisons to serial performance with the same input. This comparison is convenient for theoretical complexity analysis but impossible to perform in large-scale empirical studies with data sizes far too large to run on a single serial computer. Consequently, scaling studies currently rely on ad hoc methods that, although effective, have no grounded mathematical models. In this position paper we advocate using a rate-based model that has a concrete meaning relative to speedup and efficiency and that can be used to unify strong and weak scaling studies.

More Details

Thermodynamic investigation of concentrating solar power with thermochemical storage

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Gorman, Brandon T.; Johnson, Nathan G.; Miller, James E.; Stechel, Ellen B.

Concentrating solar power systems coupled to energy storage schemes, e.g. storage of sensible energy in a heat transfer fluid, are attractive options to reduce the transient effects of clouding on solar power output and to provide power after sunset and before sunrise. Common heat transfer fluids used to capture heat in a solar receiver include steam, oil, molten salt, and air. These high temperature fluids can be stored so that electric power can be produced on demand, limited primarily by the size of the capacity and the energy density of the storage mechanism. Phase changing fluids can increase the amount of stored energy relative to non-phase changing fluids due to the heat of vaporization or the heat of fusion. Reversible chemical reactions can also store heat; an endothermic reaction captures the heat, the chemical products are stored, and an exothermic reaction later releases the heat and returns the chemical compound to its initial state. Ongoing research is investigating the scientific and commercial potential of such reaction cycles with, for example, reduction (endothermic) and re-oxidation (exothermic) of metal oxide particles. This study includes thermodynamic analyses and considerations for component sizing of concentrating solar power towers with redox active metal oxide based thermochemical storage to reach target electrical output capacities of 0.1 MW to 100 MW. System-wide analyses here use one-dimensional energy and mass balances for the solar field, solar receiver reduction reactor, hot reduced particle storage, re-oxidizer reactor, power block, cold particle storage, and other components pertinent to the design. This work is part of a US Department of Energy (DOE) SunShot project entitled High Performance Reduction Oxidation of Metal Oxides for Thermochemical Energy Storage (PROMOTES).

More Details

Ionic liquid flow battery materials and prototyping

NSTI: Advanced Materials - TechConnect Briefs 2015

Anderson, Travis M.; Foulk, James W.

SNL has developed a series of ionic-liquid electrolytes with accompanying non- Aqueous compatible membranes and flow cell designs for improved energy density redox flow batteries targeted to support increasing demands for stationary energy storage. The new electrolytes yield a higher energy density by chemically incorporating an electro- Active transition metal element into the solvent's molecular formula. Although ionic liquids have higher viscosities than conventional non- Aqueous electrolytes, they are promising for higher energy densities due to higher metal concentrations and wider voltage windows. We have addressed high viscosity by developing new materials through careful ligand and anion selection. We have also developed tunable membranes for non- Aqueous compatibility and rapid laboratory-scale prototyping to quickly screen materials and cell designs. We are projecting a four-fold improvement in energy density over the next two years.

More Details

Fault resilient domain decomposition preconditioner for PDES

SIAM Journal on Scientific Computing

Sargsyan, Khachik; Safta, Cosmin; Debusschere, Bert; Najm, Habib N.; Rizzi, Francesco; Foulk, James W.; Mycek, Paul; Le Maitre, Olivier; Knio, Omar

The move towards extreme-scale computing platforms challenges scientific simulations in many ways. Given the recent tendencies in computer architecture development, one needs to reformulate legacy codes in order to cope with large amounts of communication, system faults, and requirements of low-memory usage per core. In this work, we develop a novel framework for solving PDEs via domain decomposition that reformulates the solution as a state of knowledge with a probabilistic interpretation. Such reformulation allows resiliency with respect to potential faults without having to apply fault detection, avoids unnecessary communication, and is generally well-suited for rigorous uncertainty quantification studies that target improvements of predictive fidelity of scientific models. We demonstrate our algorithm for one-dimensional PDE examples where artificial faults have been implemented as bit flips in the binary representation of subdomain solutions.

More Details

A smartphone-based gait data collection system for the prediction of falls in elderly adults

Proceedings of the International Telemetering Conference

Martinez, Matthew T.; De Leon, Phillip L.

Falls prevention efforts for older adults have become increasingly important and are now a significant research effort. As part of the prevention effort, analysis of gait has become increasingly important. Data is typically collected in a laboratory setting using 3-D motion capture, which can be time consuming, invasive and requires expensive and specialized equipment as well as trained operators. Inertial sensors, which are smaller and more cost effective, have been shown to be useful in falls research. Smartphones now contain Micro Electro-Mechanical (MEM) Inertial Measurement Units (IMUs), which make them a compelling platform for gait data acquisition. This paper reports the development of an iOS app for collecting accelerometer data and an offline machine learning system to classify a subject, based on this data, as faller or non-faller based on their history of falls. The system uses the accelerometer data captured on the smartphone, extracts discriminating features, and then classifies the subject based on the feature vector. Through simulation, our preliminary and limited study suggests this system has an accuracy as high as 85%. Such a system could be used to monitor an at-risk person's gait in order to predict an increased risk of falling.

More Details

Behavior of salt from the Bayou Choctaw salt dome

49th US Rock Mechanics / Geomechanics Symposium 2015

Ingraham, Mathew D.; Broome, Scott T.; Bauer, Stephen J.; Barrow, Perry C.; Flint, G.M.

A laboratory testing program was developed to examine the short-term mechanical and time-dependent (creep) behavior of salt from the Bayou Choctaw Salt Dome. Core was tested under creep and quasi-static constant mean stress axisymmetric compression, and constant mean stress axisymmetric extension conditions. Creep tests were performed at 38 degrees Celsius, and the axisymmetric tests were performed at ambient temperatures (22-26 degrees Celsius). The testing performed indicates that the dilation criterion is pressure and stress state dependent. It was found that as the mean stress increases, the shear stress required to cause dilation increases. The results for this salt are reasonably consistent with those observed for other domal salts. Also it was observed that tests performed under extensile conditions required consistently lower shear stress to cause dilation for the same mean stress, which is consistent with other domal salts. Young's modulus ranged from 27.2 to 58.7 GPa with an average of 44.4 GPa, with Poisson's ratio ranging from 0.10 to 0.43 with an average of 0.30. Creep testing indicates that the BC salt is intermediate in creep resistance when compared with other bedded and domal salt steady-state behavior.

More Details

Space-filtered kinetic theory for the LES of dense sprays

ICLASS 2015 - 13th International Conference on Liquid Atomization and Spray Systems

Doisneau, Francois; Arienti, Marco; Oefelein, Joseph

Kinetic theory is often used as a framework to derive moment equations for sprays, with considerable success in the case of a dilute spray in a fully resolved (DNS) gas field. In the prospect of computing LES of atomization with a spray solver, a formalism that accounts for the non-linear interaction between high-loading regions and turbulence at the subfilter level is needed. So we first introduce a kinetic theory frame, where the phase space is extended to space-filtered spray quantities. This rigorous formalism is a comprehensive baseline but it requires closures. Second we quantify segregation, through a priori DNS, as a relevant space-filtered quantity to account for the spray’s subfilter behavior. Third we discuss an assumption on the subfilter spray structures which allows the closure of drag, heating, and collisions from the sole knowledge of segregation.

More Details

Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

Journal of Geophysical Research

Cui, Yu Y.; Brioude, Jerome; Mckeen, Stuart A.; Angevine, Wayne M.; Kim, Si W.; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Recent top-down studies based on observations showed CH4 emissions in California’s South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km× 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency’s National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. We estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

More Details

Helium-mass-spectrometry-permeameter for the measurement of permeability of low permeability rock with application to triaxial deformation conditions

49th US Rock Mechanics Geomechanics Symposium 2015

Bauer, Stephen J.; Lee, Moo Y.; Gardner, William P.

A helium leakage detection system was modified to measure gas permeability on extracted cores of nearly impermeable rock. Here we use a Helium - Mass - Spectrometry - Permeameter (HMSP) to conduct a constant pressure, steady state flow test through a sample using helium gas. Under triaxial stress conditions, the HMSP can measure flow and estimate permeability of rocks and geomaterials down to the nanodarcy scale (10-21 m2). In this study, measurements of flow through eight shale samples under hydrostatic conditions were in the range of 10-7 to 10-9 Darcy. We extend this flow measurement technology by dynamically monitoring the release of helium from a helium saturated shale sample during a triaxial deformation experiment. The helium flow, initially extremely low, consistent with the low permeability of shale, is observed to increase in advance of volume strain increase during deformation of the shale. This is perhaps the result of microfracture development and flow path linkage through the microfractures within the shale. Once microfracturing coalescence initiates, there is a large increase in helium release and flow. This flow rate increase is likely the result of development of a macrofracture in the sample, a flow conduit, later confirmed by post-test observations of the deformed sample. The release rate (flow) peaks and then diminishes slightly during subsequent deformation; however the post deformation flow rate is considerably greater than that of undeformed shale.

More Details

Multiscale characterization of physical, chemical, and mechanical heterogeneity of mudstones

49th US Rock Mechanics / Geomechanics Symposium 2015

Yoon, Hongkyu; Dewers, Thomas; Grigg, J.; Mozley, P.

Multiscale characteristics of anisotropic, heterogeneous pore structure and compositional (e.g., kerogen, clay, cement, etc) distribution profoundly influence the hydro, mechanical, and chemical response of shale materials during stimulation and production. In this work the impact of these lithologic heterogeneities on physical, chemical, and mechanical properties is investigated over a micron to core scale of shale samples for Cretaceous Mancos Shale. Principal macroscopic lithofacies at a decimeter scale are petrographically examined. Thin sections (∼2-3cm) impregnated with fluorochromes are examined using laser scanning confocal microscopy and optical microscopy with different filters to characterize micro-facies (i.e., texture patterns) and using electron microprobe to identify the mineralogical distribution. Advanced multiscale image analysis for texture classification will be used to identify key features of samples which will be further analyzed using dual focused ion beam-scanning electron microscopy, aberration corrected-scanning TEM and energy dispersive X-ray spectrometry for nano-pore and organic-pore structures and mineralogies at nano scale. This characterization will be examined against experimental data including acoustic emission and nano-indentation measurements of elastic properties using focused ion-beam milled pillars. Finally, multiscale 3-D image stacks will be segmented to rigorously test the scale of a representative elementary volume based on multiple measures from image analysis and pore-scale simulations.

More Details

Assessment of photovoltaic surface texturing on transmittance effects and glint/glare impacts

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Yellowhair, Julius; Ho, Clifford K.

Standard glass and polymer covers on photovoltaic modules can partially reflect the sunlight causing glint and glare. Glint and glare from large photovoltaic installations can be significant and have the potential to create hazards for motorists, air-traffic controllers and pilots flying near installations. In this work, the reflectance, surface roughness and reflected solar beam spread were measured from various photovoltaic modules acquired from seven different manufacturers. The surface texturing of the PV modules varied from smooth to roughly textured. Correlations between the measured surface texturing (roughness parameters) and beam spread (subtended angle) were determined. These correlations were then used to assess surface texturing effects on transmittance and ocular impacts of glare from photovoltaic module covers. The results can be used to drive the designs for photovoltaic surface texturing to improve transmittance and minimize glint/glare.

More Details

Development of a RANS and LES/RANS flow solver for high-speed engine flowpath simulations

20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2015

Edwards, Jack R.; Fulton, Jesse A.

The development of a reactive flow solver suitable for large-scale simulations of high-speed engine component flow fields is described in this paper. The intent is to mature an existing flow solver, North Carolina State University’s REACTMB, into a production-level tool suitable for test and evaluation (T&E) activities. The computational framework is based on the combined use of Reynolds-averaged Navier-Stokes (RANS) methods and large-eddy simulation (LES) strategies, with the former used to examine system-level effects and the latter used for detailed component studies. Specific modifications that extend the capabilities of REACTMB (bleed modeling, eddy-dissipation combustion modeling) are described, as are methods for coupling flow solutions with established 1D system performance tools.

More Details

New radio-frequency photonic filter based on photonicphononic emitter-receivers

Integrated Photonics Research, Silicon and Nanophotonics, IPRSN 2015

Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew L.; Wang, Zheng; Rakich, Peter T.

A new on-chip RF photonic filter based on the photon-phonon interaction is demonstrated. The measured RF filtering responses show the unprecedented combination of high power handling, wavelength insensitivity, and second-order filtering performances. © 2015 OSA.

More Details

Analysis of laser damage tests on a coating for broad bandwidth high reflection of femtosecond pulses

Proceedings of SPIE - The International Society for Optical Engineering

Bellum, John C.; Winstone, Trevor; Lamaignere, Laurent; Sozet, Martin; Kimmel, Mark; Rambo, Patrick K.; Field, Ella; Kletecka, Damon

We have designed and produced an optical coating suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of petawatt (PW) class fs laser pulses of ∼ 900 nm center wavelength. We have produced such BBHR coatings consisting of TiO2/SiO2 layer pairs deposited by ion assisted e-beam evaporation using the large optics coater at Sandia National Laboratories. This paper focuses on laser-induced damage threshold (LIDT) tests of these coatings. LIDT is difficult to measure for such coatings due to the broad range of wavelengths over which they can operate. An ideal test would be in the vacuum environment of the fs-pulse PW use laser using fs pulses identical to of the PW laser. Short of this ideal testing would be tests over portions of the HR band of the BBHR coating using ns or sub-ps pulses produced by tunable lasers. Such tests could be over ∼ 10 nm wide wavelength intervals whose center wavelengths could be tuned over the BBHR coating's operational band. Alternatively, the HR band of the BBHR coating could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to absorbed moisture by the coating under ambient conditions. We conduct LIDT tests on the BBHR coatings at selected AOIs to gain insight into the coatings' laser damage properties, and analyze how the results of the different LIDT tests compare.

More Details

Visual search in operational environments: Balancing operational constraints with experimental control

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Speed, Ann E.

Visual search has been an active area of research – empirically and theoretically – for a number of decades, however much of that work is based on novice searchers performing basic tasks in a laboratory. This paper summarizes some of the issues associated with quantifying expert, domain-specific visual search behavior in operationally realistic environments.

More Details

Miniature lowpass filters in low loss 9k7 LTCC

IMAPS/ACerS 11th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2015

Dai, Steve X.; Hsieh, Lung-Hwa

DuPont 9k7 low temperature cofired ceramic (LTCC) is a low loss, or high quality factor Q, tape system targeting at radio frequency (RF) applications. This paper reports the effect of a critical process parameter, heating rate, on the densification and dielectric properties of the 9k7 LTCC. The role of competing densification and crystallization during the sintering of 9k7 is discussed. The high Q of DuPont 9K7 can be used to improve RF system performance, for example a better receiver noise figure, by designing embedded passive RF components such as inductors, capacitors and filters. Miniaturized multilayer low pass filters (LPF) with a wide stopband were fabricated to showcase the technology.

More Details

Mesoscale modeling and simulation of composition, manufacturing, and microstructure effects on electrical conduction in thermal battery cathodes

ECS Transactions

Reinholz, Emilee L.; Roberts, Scott A.; Schunk, Peter R.; Apblett, Christopher A.

Li/FeS2 thermal batteries provide a stable, robust, and reliable power source capable of long-term electrical energy storage without performance degradation. These systems rely on the electrical conductivity of FeS2 cathodes for critical performance parameters such as power and lifetime, and on permeability of the electrolyte through the solid FeS2 particles for ion transfer. The effects of component composition, manufacturing conditions, and the mechanical deformation on conductivity and permeability have not been studied. We present simulation results from a finite element computer model compared with impedance spectroscopy electrical conductivity experiments. Our methods elucidate the combined effects of slumping, particle size distribution, composition, and pellet density on properties related to electrical conduction in Li/FeS2 thermal battery cathodes.

More Details

Novel tubular receiver panel configurations for increased efficiency of high-temperature solar receivers

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Christian, Josh; Ortega, Jesus; Ho, Clifford K.

Typical Concentrated Solar Power (CSP) central receiver power plants require the use of either an external or cavity receiver. Previous and current external receivers consist of a series of tubes connected to manifolds that form a cylindrical or rectangular shape such as in the cases of Solar One, Solar Two, and most recently the Ivanpah solar plant. These receivers operate at high surface temperatures (>600°C) at which point thermal re-radiation is significant. However, the geometric arrangement of these heat transfer tubes results in heat losses directly to the environment. This work focused on how to fundamentally reduce this heat loss through the manipulation of heat transfer tube configurations. Four receiver configurations are studied: flat receiver (base case study), a radial receiver with finned structures (fins arranged in a circular pattern on a cylinder), a louvered finned structure (horizontal and angled fins on a flat plate), and a vertical finned structure (fins oriented vertically along a flat plate). The thermal efficiency, convective heat loss patterns, and air flow around each receiver design is found using the computational fluid dynamics (CFD) code ANSYS FLUENT. Results presented in this paper show that alternative tubular configurations increase thermal efficiency by increasing the effective solar absorptance of these hightemperature receivers by increasing the light trapping effects of the receiver, reducing thermal emittance to the environment, and reducing the overall size of the receiver. Each receiver configuration has finned structures that take advantage of the directional dependence of the heliostat field resulting in a light trapping effect on the receiver. The finned configurations tend to lead to "hot" regions on the receiver, but the new configurations can take advantage of high local view factors (each surface can "see" another receiver surface) in these regions through the use of heat transfer fluid (HTF) flow patterns. The HTF reduces the temperatures in these regions increasing the efficiency of heat transfer to the fluid. Finally, the new receiver configurations have a lower overall optical intercept region resulting in a higher geometric concentration ratio for the receiver. Compared to the base case analysis (flat plate receiver), the novel tubular geometries results showed an increase in thermal efficiency.

More Details

Coupled optical-thermal-fluid modeling of a directly heated tubular solar receiver for supercritical CO2 Brayton cycle

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Ortega, Jesus; Khivsara, Sagar D.; Christian, Josh; Yellowhair, Julius; Ho, Clifford K.

Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energydensity system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (∼50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by ∼200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input ∼2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of ∼85%.

More Details

Structural analysis of a direct heated tubular solar receiver for supercritical CO2 Brayton cycle

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Ortega, Jesus; Christian, Josh; Ho, Clifford K.

Closed-loop super-critical carbon dioxide (sCO2) Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. However, high temperatures (650-700°C) and pressures (20-25 MPa) are required in the solar receiver. In this study an extensive material review was performed along with a tube size optimization following the ASME Boiler and Pressure Vessel Code and B31.1 and B313.3 codes respectively. Subsequently a thermal-structural model was developed using ANSYS Fluent and Structural to design and analyze the tubular receiver that could provide the heat input for a ∼2 MWth plant. The receiver will be required to provide an outlet temperature of 650°C (at 25 MPa) or 700°C (at 20 MPa). The induced thermal stresses were applied using a temperature gradient throughout the tube while a constant pressure load was applied on the inner wall. The resulting stresses have been validated analytically using constant surface temperatures. The cyclic loading analysis was performed using the Larson-Miller creep model in nCode Design Life to define the structural integrity of the receiver over the desired lifetime of ∼10,000 cycles. The results have shown that the stresses induced by the thermal and pressure load can be withstood by the tubes selected. The creep-fatigue analysis displayed the damage accumulation due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. As a result, a complete model to verify the structural integrity and thermal performance of a high temperature and pressure receiver has been developed. This work will serve as reference for future design and evaluation of future direct and indirect tubular receivers.

More Details

Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

Proceedings of SPIE - The International Society for Optical Engineering

Ortega, Jesus; Christian, Josh; Yellowhair, Julius; Ho, Clifford K.

Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ∼90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

More Details

Pulse-burst PIV in a high-speed wind tunnel

53rd AIAA Aerospace Sciences Meeting

Beresh, Steven J.; Kearney, Sean P.; Wagner, Justin L.; Guildenbecher, Daniel; Henfling, John F.; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason; Roy, Sukesh

Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are a limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground test facility.

More Details

Towards task-parallel reductions in OpenMP

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Ciesko, Jan; Mateo, Sergi; Teruel, Xavier; Martorell, Xavier; Ayguade, Eduard; Labarta, Jesus; Duran, Alex; De Supinski, Bronis R.; Olivier, Stephen L.; Li, Kelvin; Eichenberger, Alexandre E.

Reductions represent a common algorithmic pattern in many scientific applications. OpenMP* has always supported them on parallel and worksharing constructs. OpenMP 3.0’s tasking constructs enable new parallelization opportunities through the annotation of irregular algorithms. Unfortunately the tasking model does not easily allow the expression of concurrent reductions, which limits the general applicability of the programming model to such algorithms. In this work, we present an extension to OpenMP that supports task-parallel reductions on task and taskgroup constructs to improve productivity and programmability. We present specification of the feature and explore issues for programmers and software vendors regarding programming transparency as well as the impact on the current standard with respect to nesting, untied task support and task data dependencies. Our performance evaluation demonstrates comparable results to hand coded task reductions.

More Details

Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance

Proceedings of SPIE - The International Society for Optical Engineering

Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus; Christian, Josh; Andraka, Charles E.

Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandiaas solar furnace at an irradiance of ∼30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.

More Details

Relationship between acoustic tones and flow structure in transonic cavity flow

45th AIAA Fluid Dynamics Conference

Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; Arunajatesan, Srinivasan; Henfling, John F.; Spillers, Russell; Pruett, Brian O.

Particle image velocimetry (PIV) measurements quantified the coherent structure of acoustic tones in a Mach 0.91 cavity flow. Stereoscopic PIV measurements were performed at 10-Hz and two-component, time-resolved data were obtained using a pulse-burst laser. The cavity had a square planform, a length-to-depth ratio of five, and an incoming turbulent boundary layer. Simultaneous fast-response pressure signals were bandpass filtered about each cavity tone frequency. The 10-Hz PIV data were then phase-averaged according to the bandpassed pressures to reveal the flow structure associated with the resonant tones. The first Rossiter mode was associated with large scale oscillations in the shear layer, while the second and third modes contained organized structures consistent with convecting vortical disturbances. The spatial wavelengths of the cavity tones, based on the vertical coherent velocity fields, were less than those predicted by the Rossiter relation. With increasing streamwise distance the spacing between structures increased and approached the predicted Rossiter value at the aft-end of the cavity. Moreover, the coherent structures appeared to rise vertically with downstream propagation. The time-resolved PIV data were bandpass filtered about the cavity tone frequencies to reveal flow structure. The resulting spacing between disturbances was similar to that in the phase-averaged flowfields.

More Details

Situation Awareness and Automation in the Electric Grid Control Room

Procedia Manufacturing

Adams, Susan S.; Cole, Kerstan; Haass, Michael J.; Warrender, Christina E.; Jeffers, Robert; Burnham, Laurie; Forsythe, James C.

Electric distribution utilities, the companies that feed electricity to end users, are overseeing a technological transformation of their networks, installing sensors and other automated equipment, that are fundamentally changing the way the grid operates. These grid modernization efforts will allow utilities to incorporate some of the newer technology available to the home user – such as solar panels and electric cars – which will result in a bi-directional flow of energy and information. How will this new flow of information affect control room operations? How will the increased automation associated with smart grid technologies influence control room operators’ decisions? And how will changes in control room operations and operator decision making impact grid resilience? These questions have not been thoroughly studied, despite the enormous changes that are taking place. In this study, which involved collaborating with utility companies in the state of Vermont, the authors proposed to advance the science of control-room decision making by understanding the impact of distribution grid modernization on operator performance. Distribution control room operators were interviewed to understand daily tasks and decisions and to gain an understanding of how these impending changes will impact control room operations. Situation awareness was found to be a major contributor to successful control room operations. However, the impact of growing levels of automation due to smart grid technology on operators’ situation awareness is not well understood. Future work includes performing a naturalistic field study in which operator situation awareness will be measured in real-time during normal operations and correlated with the technological changes that are underway. The results of this future study will inform tools and strategies that will help system operators adapt to a changing grid, respond to critical incidents and maintain critical performance skills.

More Details

Development of residual stress simulation and experimental measurement tools for stainless steel pressure vessels

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Reynolds, Thomas B.; Brown, Arthur; Beghini, Lauren L.; Kostka, Timothy D.; San Marchi, Chris

In forged, welded, and machined components, residual stresses can form during the fabrication process. These residual stresses can significantly alter the fatigue and fracture properties compared to an equivalent component containing no residual stress. When performing lifetime assessment, the residual stress state must be incorporated into the analysis to most accurately reflect the initial condition of the component. The focus of this work is to present the computational and experimental tools that we are developing to predict and measure the residual stresses in stainless steel for use in pressure vessels. The contour method was used to measure the residual stress in stainless steel forgings. These results are compared to the residual stresses predicted using coupled thermo-mechanical simulations that track the evolution of microstructure, strength and residual stress during processing.

More Details

Insights from Pilot Testing of the IDHEAS HRA Method

Procedia Manufacturing

Liao, Huafei

Human reliability analysis (HRA) is used in the context of probabilistic risk assessment (PRA) to provide risk information regarding human performance to support risk-informed decision-making with respect to high-reliability industries. The IntegrateD Human Event Analysis System (IDHEAS) is a new HRA method developed for internal, at-power nuclear power plant (NPP) events. It was motivated by the intention to reduce unnecessary and inappropriate variability in HRA results and improve the reliability of human error probability (HEP) estimates. The method has a strong foundation in human performance and cognitive psychology theories, and employs a cause-based quantification model. This paper documents a study conducted to pilot test IDHEAS to (1) identify issues that needed to be addressed and (2) provide feedback to refine the method before the method was finalized. An introduction on IDHEAS is provided first. Then sample IDHEAS analysis results are presented for illustration purposes. Next, insights from the testing in terms of method strengths and weaknesses are discussed, which is followed by concluding remarks.

More Details

Measuring expert and novice performance within computer security incident response teams

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Silva, Austin R.; Avina, Glory E.; Mcclain, Jonathan T.; Matzen, Laura E.; Forsythe, James C.

There is a great need for creating cohesive, expert cybersecurity incident response teams and training them effectively. This paper discusses new methodologies for measuring and understanding expert and novice differences within a cybersecurity environment to bolster training, selection, and teaming. This methodology for baselining and characterizing individuals and teams relies on relating eye tracking gaze patterns to psychological assessments, human-machine transaction monitoring, and electroencephalography data that are collected during participation in the game-based training platform Tracer FIRE. We discuss preliminary findings from two pilot studies using novice and professional teams.

More Details

Autonomous microgrid design using classifier-guided sampling

Proceedings of the ASME Design Engineering Technical Conference

Backlund, Peter B.; Eddy, John P.

Identifying high-performance, system-level microgrid designs is a significant challenge due to the overwhelming array of possible configurations. Uncertainty relating to loads, utility outages, renewable generation, and fossil generator reliability further complicates this design problem. In this paper, the performance of a candidate microgrid design is assessed by running a discrete event simulation that includes extended, unplanned utility outages during which microgrid performance statistics are computed. Uncertainty is addressed by simulating long operating times and computing average performance over many stochastic outage scenarios. Classifier-guided sampling, a Bayesian classifier-based optimization algorithm for computationally expensive design problems, is used to search and identify configurations that result in reduced average load not served while not exceeding a predetermined microgrid construction cost. The city of Hoboken, NJ, which sustained a severe outage following Hurricane Sandy in October, 2012, is used as an example of a location in which a well-designed microgrid could be of great benefit during an extended, unplanned utility outage. The optimization results illuminate design trends and provide insights into the traits of high-performance configurations.

More Details

Studies on the thermal breakdown of common Li-ion battery electrolyte components

Journal of the Electrochemical Society

Lamb, Joshua; Orendorff, Christopher; Roth, E.P.; Langendorf, Jill L.

While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. While gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.

More Details

Optical properties of transiently-excited semiconductor hyperbolic metamaterials

Optical Materials Express

Campione, Salvatore; Luk, Ting S.; Liu, Sheng; Sinclair, Michael B.

Ultrafast optical excitation of photocarriers has the potential to transform undoped semiconductor superlattices into semiconductor hyperbolic metamaterials (SHMs). In this paper, we investigate the optical properties associated with such ultrafast topological transitions. We first show reflectance, transmittance, and absorption under TE and TM plane wave incidence. In the unpumped state, the superlattice exhibits a frequency region with high reflectance (>80%) and a region with low reflectance (<1%) for both TE and TM polarizations over a wide range of incidence angles. In contrast, in the photopumped state, the reflectance for both frequencies and polarizations is very low (<1%) for a similar range of angles. Interestingly, this system can function as an all-optical reflection switch on ultrafast timescales. Furthermore, for TM incidence and close to the epsilon-near-zero point of the longitudinal permittivity, directional perfect absorption on ultrafast timescales may also be achieved. Finally, we discuss the onset of negative refraction in the photopumped state.

More Details

Developing a Capability to Elicit and Structure Psychosocial Decision Information within Computational Models

Procedia Manufacturing

Bernard, Michael

There is a recognized need to develop computational models that can represent and simulate the decision making process of various groups across socio-cultural domains [5]. Yet, developing such models can be greatly hampered by the need to acquire and represent information pertaining to the psychological and social aspects of decision-making within these groups. Currently, there are numerous techniques and tools to help facilitate the elicitation and structuring of knowledge within expert-type systems—particularly those that focus on technical processes such as mechanical troubleshooting [3]. However, few techniques and tools have been developed for models that are intended to represent and assess the decision making of groups within different societies—particularly including cultural elements within these societies. This paper seeks to help address this challenge by discussing an approach to eliciting and structuring cross-cultural psychosocial and behavioral-economic elements within a theory-based assessment model. This work was developed to address the needs of Sandia National Laboratories’ Behavioral Influence Assessment modeling capability, which assesses decision-making within societies. The main component of the knowledge engineering effort is what we call the “knowledge structure.” The knowledge structure acts as scaffolding for the organization of psychosocial processes underlying decision-making, as well as the actual content of that knowledge with respect to a modeled society.

More Details

Contaminant entrainment in a liquid fuel fire

Proceedings of the Thermal and Fluids Engineering Summer Conference

Brown, Alexander L.; Foulk, James W.

Some fires may involve fuels that are contaminated with airborne particles such as hazardous chemicals or radioactive materials, and therefore pose a significant health risk by the potential inhalation of the contaminated material. In particular, consider a relatively inert solid material which is sub-micron in size that is suspended in a liquid solvent. Various mechanisms can lead to the solid becoming entrained in the air. First, as a liquid fuel is consumed it typically transitions through a boiling regime. As the vapor bubbles rupture at the liquid surface, the liquid response can result in the formation of film drops (collapsing bubble film) or jet drops (caused by liquid rapidly filling the vapor void). Surface wave action can also result in bubble formation and entrainment as the bubbles collapse. This mechanism is generally a function of wind speed and fluid properties. Also, mass may be entrained from a residual layer formed after consumption of the fuel. This paper reviews the existing literature on these entrainment mechanisms. Based on data from the review, the results from a Lagrangian/Eulerian coupled computational transport code are compared to some existing data on the entrainment of contaminants from liquid fuel fires. Since the multi-phase mechanistic prediction of the entrainment is not mature, the methods employ coupling of correlation data to the computational fluid dynamics (CFD) code.

More Details

Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory

Dalton Transactions

Weck, Philippe F.; Kim, Eunja; Tikare, Veena; Mitchell, John A.

The elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy cubic Pn3m polymorph of δ-ZrH1.5 does not satisfy all the Born requirements for mechanical stability, unlike its nearly degenerate tetragonal P42/mcm polymorph. Elastic moduli predicted with the Voigt-Reuss-Hill approximations suggest that mechanical stability of α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates is limited by the shear modulus. According to both Pugh's and Poisson's ratios, α-Zr, Zr-alloy and Zr-hydride polycrystalline aggregates can be considered ductile. The Debye temperatures predicted for γ-ZrH, δ-ZrH1.5 and ε-ZrH2 are D = 299.7, 415.6 and 356.9 K, respectively, while D = 273.6, 284.2, 264.1 and 257.1 K for the α-Zr, Zry-4, ZIRLO and M5 matrices, i.e. suggesting that Zry-4 possesses the highest micro-hardness among Zr matrices.

More Details

Implementation and verification of RKPM in the sierra/solidmechanics analysis code

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Littlewood, David J.; Hillman, Mike; Yreux, Edouard; Bishop, Joseph E.; Beckwith, Frank; Chen, Jiun S.

The reproducing kernel particle method (RKPM) is a meshfree method for computational solid mechanics that can be tailored for an arbitrary order of completeness and smoothness. The primary advantage of RKPM relative to standard finiteelement (FE) approaches is its capacity to model large deformations, material damage, and fracture. Additionally, the use of a meshfree approach offers great flexibility in the domain discretization process and reduces the complexity of mesh modifications such as adaptive refinement. We present an overview of the RKPM implementation in the Sierra/SolidMechanics analysis code, with a focus on verification, validation, and software engineering for massively parallel computation. Key details include the processing of meshfree discretizations within a FE code, RKPM solution approximation and domain integration, stress update and calculation of internal force, and contact modeling. The accuracy and performance of RKPM are evaluated using a set of benchmark problems. Solution verification, mesh convergence, and parallel scalability are demonstrated using a simulation of wave propagation along the length of a bar. Initial model validation is achieved through simulation of a Taylor bar impact test. The RKPM approach is shown to be a viable alternative to standard FE techniques that provides additional flexibility to the analyst community.

More Details

Density estimation using muon imaging

Near Surface Geoscience 2015 - 21st European Meeting of Environmental and Engineering Geophysics

Preston, Leiph; Bonal, Nedra; Dorsey, Daniel J.; Schwellenbach, D.; Dreesen, W.; Green, J.A.

Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. For objects like a volcano, the detector is placed at the volcano's base and muon fluxes for paths through the volcano are recorded for many days to weeks.

More Details

Response of a store with tunable natural frequencies in compressible cavity flow

53rd AIAA Aerospace Sciences Meeting

Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick; Spillers, Russell; Henfling, John F.

Fluid-structure interactions that occur during aircraft internal store carriage were experimentally explored at Mach 0.94 and 1.47 using a generic, aerodynamic store installed in a rectangular cavity having a length-to-depth ratio of 7. Similar to previous studies using a cylindrical store, the aerodynamic store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas the spanwise response was much more limited. The store had interchangeable components to vary its natural frequencies by about 10 - 300 Hz. By tuning natural frequencies, mode-matched cases were explored where a prominent cavity tone frequency matched a structural natural frequency of the store. Mode matching produced substantial increases in store vibrations, though the response of the store continued to scale linearly with the dynamic pressure or loading in the bay. Near mode matching frequencies, the response of the store was quite sensitive as changes in cavity tone frequencies of 1% altered store vibrations by as much as a factor of two.

More Details

Analysis of the impact of leading edge surface degradation on wind turbine performance

33rd Wind Energy Symposium

Langel, Christopher M.; Chow, Raymond; Hurley, Owen F.; Van Dam, C.P.; Ehrmann, Robert S.; White, Edward B.; Maniaci, David C.

Over time it has been reported wind turbine power output can diminish below manufacturers promised levels. This is clearly undesirable from an operator standpoint, and can also put pressure on turbine companies to make up the difference. A likely explanation for the discrepancy in power output is the contamination of the leading edge due to environmental conditions creating surfaces much coarser than intended. To examine the effects of airfoil leading edge roughness, a comprehensive study has been performed both experimentally and computationally on a NACA 633 - 418 airfoil. A description of the experimental setup and test matrix are provided, along with an outline of the computational roughness amplification model used to simulate rough configurations. The experimental investigation serves to provide insight into the changes in measurable airfoil properties such as lift, drag, and boundary layer transition location. The computational effort is aimed at using the experimental results to calibrate a roughness model that has been implemented in an unsteady RANS solver. Furthermore, a blade element momentum code was used to assess the impact on the performance of a turbine as whole due to discrepancies in clean vs. soiled airfoil characteristics. The results have implications in predicting the power loss due to leading edge surface roughness, and can help to establish an upper bound on admissible surface contamination levels.

More Details

Visible light LVP on bulk silicon devices

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Beutler, Joshua; Clement, John J.; Foulk, James W.; Stevens, Jeffrey; Hodges, V.C.; Silverman, Scott; Chivas, Robert

Visible light laser voltage probing (LVP) for improved backside optical spatial resolution is demonstrated on ultrathinned bulk Si samples. A prototype system for data acquisition, a method to produce ultra-thinned bulk samples as well as LVP signal, imaging, and waveform acquisition are described on bulk Si devices. Spatial resolution and signal comparison with conventional, infrared LVP analysis is discussed.

More Details

Geometric hitting set for segments of few orientations

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S.B.; Parekh, Ojas D.; Phillips, Cynthia A.

We study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the “hitting points”). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

More Details

How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high-reflection coatings

Proceedings of SPIE - The International Society for Optical Engineering

Field, Ella; Bellum, John C.; Kletecka, Damon

Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).

More Details

Design and laser damage properties of a dichroic beam combiner coating for 22.5° incidence and S polarization with high-transmission at 527nm and high-reflection at 1054nm

Proceedings of SPIE - The International Society for Optical Engineering

Bellum, John C.; Field, Ella; Kletecka, Damon; Rambo, Patrick K.; Smith, Ian C.

We have designed a dichroic beam combiner coating consisting of 11 HfO2/SiO2 layer pairs deposited on a large fused silica substrate. The coating provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for light at 22.5° angle of incidence (AOI) in air in S polarization (Spol). The coating's design is based on layers of near half-wave optical thickness in the design space for stable HT at 527 nm, with layer modifications that provide HR at 1054 nm while preserving HT at 527 nm. Its implementation in the 527 nm/1054 nm dual wavelength beam combiner arrangement has two options, with each option requiring one or the other of the high intensity beams to be incident on the dichroic coating from within the substrate (from glass). We show that there are differences between the two options with respect to the laser-induced damage threshold (LIDT) properties of the coating, and analyze the differences in terms of the 527 nm and 1054 nm E-field intensity behaviors for air → coating and glass → coating incidence. Our E-field analysis indicates that LIDTs for air → coating incidence should be higher than for glass → coating incidence. LIDT measurements for Spol at the use AOI with ns pulses at 532 nm and 1064 nm confirm this analysis with the LIDTs for glass → coating incidence being about half those for air → coating incidence at both wavelengths. These LIDT results and the E-field analysis clearly indicate that the best beam combiner option is the one for which the high intensity 527 nm beam is incident on the coating from air and the 1054 nm high intensity beam is incident on the coating from glass.

More Details

Evaluation of a gamma camera system for the RITS-6 accelerator using the self-magnetic pinch diode

Proceedings of SPIE - The International Society for Optical Engineering

Webb, Timothy J.; Kiefer, Mark L.; Gignac, Raymond; Baker, Stuart A.

The self-magnetic pinch (SMP) diode is an intense radiographic source fielded on the Radiographic Integrated Test Stand (RITS-6) accelerator at Sandia National Laboratories in Albuquerque, NM. The accelerator is an inductive voltage adder (IVA) that can operate from 2-10 MV with currents up to 160 kA (at 7 MV). The SMP diode consists of an annular cathode separated from a flat anode, holding the bremsstrahlung conversion target, by a vacuum gap. Until recently the primary imaging diagnostic utilized image plates (storage phosphors) which has generally low DQE at these photon energies along with other problems. The benefits of using image plates include a high-dynamic range, good spatial resolution, and ease of use. A scintillator-based X-ray imaging system or "gamma camera" has been fielded in front of RITS and the SMP diode which has been able to provide vastly superior images in terms of signal-to-noise with similar resolution and acceptable dynamic range.

More Details

Contaminant entrainment from a gasoline pool fire

2015 Fall Meeting of the Western States Section of the Combustion Institute, WSSCI 2015

Brown, Alexander L.; Zepper, Ethan; Foulk, James W.; Restrepo, Louis

Aerosol release in the range of less than 10 μm is of concern in transportation accident situations, particularly those involving radioactive contaminants and fuel fires. An accurate approximation of the Airborne Release Fraction (ARF) is important to properly estimate the impact of the contaminant release to the environment and surrounding population. An experiment was selected which studied contaminant entrainment in a fire and contained enough data sufficiently well presented to simulate with existing computational fluid dynamics (CFD) tools. Work was enabled by utilizing source terms for similar physical systems as presented in other publications. It is possible to investigate physical sensitivities from this model, giving insight into the experimental behavior, and physical processes. The effort also helps prioritize model development in the interest in furthering this predictive capability. Four mechanisms were identified as contributing to contaminant entrainment. Two of these mechanisms, entrainment due to evaporation induction and boiling atomization, were the focus of this study. Parameters, including boiling regime duration, evaporation regime particle size and turbulence, were varied because of their numeric uncertainty, while others like particle injection location, simulation time, and fuel height were varied based on a presumed importance. Entrainment values, as collected downstream of a release, are dependent on the magnitude of the entrainment mechanism, in which boiling far exceeded evaporation in quantity of entrained mass.

More Details

A template-based approach for parallel hexahedral two-refinement

Procedia Engineering

Owen, Steven J.; Shih, Ryan M.

In this work we provide a template-based approach for generating locally refined all-hex meshes. We focus specifically on refinement of initially structured grids utilizing a 2-refinement approach where uniformly refined hexes are subdivided into eight child elements. The refinement algorithm consists of identifying marked nodes that are used as the basis for a set of four simple refinement templates. The target application for 2-refinement is a parallel grid-based all-hex meshing tool for high performance computing in a distributed environment. The result is a parallel consistent locally refined mesh requiring minimal communication and where minimum mesh quality is greater than scaled Jacobian 0.4 prior to smoothing.

More Details

Density functional theory and conductivity studies of boron-based anion receptors

Journal of the Electrochemical Society

Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan; Fenton, Kyle R.; Foulk, James W.; Staiger, Chad L.; Nagasubramanian, Ganesan

Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries.We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor is sufficiently electrophilic that organic solvent molecules compete with F- for boron-site binding, and specific solvent effects must be considered when predicting its F- affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F- and organic solvent molecules. After accounting for specific solvent effects, however, its net F- affinity is about the same as the simple oxalate-based anion receptor. Finally, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F- ions.

More Details

Use of Bayesian Networks for Qualification Planning: A Predictive Analysis Framework for a Technically Complex Systems Engineering Problem

Procedia Computer Science

Rizzo, Davinia B.; Blackburn, Mark R.

This paper discusses the viability of using Bayesian Network (BN) models to support qualification planning in order to predict the suitability of Six Degrees of Freedom (6DOF) vibration testing for qualification. Qualification includes environmental testing such as temperature, vibration, and shock to support a stochastic argument about the suitability of a design. Qualification is becoming more complex and restricted yet available new technologies are not fully utilized. Technology has advanced to the state where 6DOF vibration shakers and control systems capable of high frequency tests are possible, but the problem using these systems is far more complex than traditional single degree of freedom (SDOF) tests. This challenges systems engineers as they strive to plan qualification in an environment where technical, environmental, and political constraints are coupled with the traditional cost, risk and schedule constraints. New technologies are also available for systems engineers to combine technical understanding with cost, risk and schedule factors to aid in decision making for complex problems such as qualification planning. BN models may provide the framework to aid Systems Engineers in planning qualification efforts with complex constraints. This paper discusses related work, the current approach and results of this research.

More Details

On the reduction of combustion noise by a close-coupled pilot injection in a small-bore di diesel engine

ASME 2015 Internal Combustion Engine Division Fall Technical Conference, ICEF 2015

Busch, Stephen; Zha, Kan; Warey, Alok; Pesce, Francesco; Peterson, Richard

For a pilot-main injection strategy in a single cylinder light duty diesel engine, the dwell between the pilot- and maininjection events can significantly impact combustion noise. As the solenoid energizing dwell decreases below 200 μs, combustion noise decreases by approximately 3 dB and then increases again at shorter dwells. A zero-dimensional thermodynamic model has been developed to capture the combustion-noise reduction mechanism; heat-release profiles are the primary simulation input and approximating them as top-hat shapes preserves the noise-reduction effect. A decomposition of the terms of the underlying thermodynamic equation reveals that the direct influence of heat-release on the temporal variation of cylinder-pressure is primarily responsible for the trend in combustion noise. Fourier analyses reveal the mechanism responsible for the reduction in combustion noise as a destructive interference in the frequency range between approximately 1 kHz and 3 kHz. This interference is dependent on the timing of increases in cylinder-pressure during pilot heat-release relative to those during main heat-release. The mechanism by which combustion noise is attenuated is fundamentally different from the traditional noise reduction that occurs with the use of long-dwell pilot injections, for which noise is reduced primarily by shortening the ignition delay of the main injection. Band-pass filtering of measured cylinderpressure traces provides evidence of this noise-reduction mechanism in the real engine. When this close-coupled pilot noise-reduction mechanism is active, metrics derived from cylinder-pressure such as the location of 50% heat-release, peak heat-release rates, and peak rates of pressure rise cannot be used reliably to predict trends in combustion noise. The quantity and peak value of the pilot heat-release affect the combustion noise reduction mechanism, and maximum noise reduction is achieved when the height and steepness of the pilot heat-release profile are similar to the initial rise of the main heat-release event. A variation of the initial rise-rate of the main heat-release event reveals trends in combustion noise that are the opposite of what would happen in the absence of a close-coupled pilot. The noise-reduction mechanism shown in this work may be a powerful tool to improve the tradeoffs among fuel efficiency, pollutant emissions, and combustion noise.

More Details

Results of partially-reflected critical experiments in square-pitched arrays of water-moderated 6.9 percent enriched fuel rods

Transactions of the American Nuclear Society

Harms, Gary A.; Ford, John T.; Campbell, Rafe

The Seven Percent Critical Experiment (7uPCX) was designed to provide benchmark criticality and reactor physics data for water-moderated pin-fueled nuclear reactor cores. The enrichment of the fuel was chosen to explore the enrichment range above the current 5% ceiling for US commercial pressurized water reactors. The experiment was part of the US Department of Energy (DOE) Nuclear Energy Research Initiative (NERI) Project 01-124 titled “Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel”. The NERI project was a collaboration between AREVA Federal Services, LLC; the University of Florida; Oak Ridge National Laboratory; and Sandia National Laboratories (SNL). The experiments at Sandia are currently supported by the DOE National Nuclear Security Administration Nuclear Criticality Safety Program. Two sets of benchmark experiments have been completed and documented as LEU-COMP-THERM-080 and LEU-COMP-THERM-078. Those experiments were done with the number of fuel rods in the fully-reflected array as the approach parameter. The experiments reported here are similar to those in LEU-COMP-THERM-080 except that the arrays are partially-reflected – the arrays were larger than would be possible with full reflection and the approach-to-critical experiments were done with the depth of the water in the critical assembly as the approach parameter. These experiments are reported as LEU-COMP-THERM-096.

More Details

Implementation and verification of RKPM in the sierra/solidmechanics analysis code

ASME International Mechanical Engineering Congress and Exposition Proceedings Imece

Littlewood, David J.; Hillman, Mike; Yreux, Edouard; Bishop, Joseph E.; Beckwith, Frank; Chen, Jiun S.

The reproducing kernel particle method (RKPM) is a meshfree method for computational solid mechanics that can be tailored for an arbitrary order of completeness and smoothness. The primary advantage of RKPM relative to standard finiteelement (FE) approaches is its capacity to model large deformations, material damage, and fracture. Additionally, the use of a meshfree approach offers great flexibility in the domain discretization process and reduces the complexity of mesh modifications such as adaptive refinement. We present an overview of the RKPM implementation in the Sierra/SolidMechanics analysis code, with a focus on verification, validation, and software engineering for massively parallel computation. Key details include the processing of meshfree discretizations within a FE code, RKPM solution approximation and domain integration, stress update and calculation of internal force, and contact modeling. The accuracy and performance of RKPM are evaluated using a set of benchmark problems. Solution verification, mesh convergence, and parallel scalability are demonstrated using a simulation of wave propagation along the length of a bar. Initial model validation is achieved through simulation of a Taylor bar impact test. The RKPM approach is shown to be a viable alternative to standard FE techniques that provides additional flexibility to the analyst community.

More Details

A comparison of angular Discretization techniques for the Radiative transport equation

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Tencer, John T.

Two of the most popular deterministic radiation transport methods for treating the angular dependence of the radiative intensity for heat transfer: The discrete ordinates and simplified spherical harmonics approximations are compared. A problem with discontinuous boundary conditions is included to evaluate ray effects for discrete ordinates solutions. Mesh resolution studies are included to ensure adequate convergence and evaluate the effects of the contribution of false scattering. All solutions are generated using finite element spatial discretization. Where applicable, any stabilization used is included in the description of the approximation method or the statement of the governing equations. A previous paper by the author presented results for a set of 2D benchmark problems for the discrete ordinates method using the PN-TN quadrature of orders 4, 6, and 8 as well as the P1, M1, and SP3 approximations. This paper expands that work to include the Lathrop-Carlson level symmetric quadrature of order up to 20 as well as the Lebedev quadrature of order up to 76 and simplified spherical harmonics of odd orders from 1 to 15. Two 3D benchmark problems are considered here. The first is a canonical problem of a cube with a single hot wall. This case is used primarily to demonstrate the potentially unintuitive interaction between mesh resolution, quadrature order, and solution error. The second case is meant to be representative of a pool fire. The temperature and absorption coefficient distributions are defined analytically. In both cases, the relative error in the radiative flux or the radiative flux divergence within a volume is considered as the quantity of interest as these are the terms that enter into the energy equation. The spectral dependence of the optical properties and the intensity is neglected.

More Details

The physical chemistry of Criegee intermediates in the Gas Phase

International Reviews in Physical Chemistry

Osborn, David L.; Taatjes, Craig A.

Carbonyl oxides, also known as Criegee intermediates, are key intermediates in both gas phase ozonolysis of unsaturated hydrocarbons in the troposphere and solution phase organic synthesis via ozonolysis. Although the study of Criegee intermediates in both arenas has a long history, direct studies in the gas phase have only recently become possible through new methods of generating stabilised Criegee intermediates in sufficient quantities. This advance has catalysed a large number of new experimental and theoretical investigations of Criegee intermediate chemistry. In this article we review the physical chemistry of Criegee intermediates, focusing on their molecular structure, spectroscopy, unimolecular and bimolecular reactions. These recent results have overturned conclusions from some previous studies, while confirming others, and have clarified areas of investigation that will be critical targets for future studies. In addition to expanding our fundamental understanding of Criegee intermediates, the rapidly expanding knowledge base will support increasingly predictive models of their impacts on society.

More Details

Assessment of models for near wall behavior and swirling flows in nuclear reactor sub-system simulations

Proceedings - 15th European Turbulence Conference, ETC 2015

Smith, Thomas M.; Christon, Mark A.; Baglietto, Emilio; Luo, Hong

Accurate simulation of turbulence remains one of the most challenging problems in nuclear reactor analysis and design. Due to limitations in computing resources, Reynolds averaged Navier Stokes models (RANS) continue to play an important role in reactor simulations. The Consortium for advanced simulations of light water reactors (CASL) is a Department of Energy technology hub that is investing in research and development of a state-of-the-art computational fluid dynamics capability to meet the challenges of turbulent simulation of nuclear reactors. In this presentation, we assess several RANS eddy viscosity models appropriate for single-phase incompressible turbulent flows. Specifically, we compare the single equation Splalart-Allmaras to several variations of the k − ε model. The assessment takes into consideration elements of full system reactor cores such as complex geometries, heterogeneous meshes, swirling flow, near wall flow behavior, heat transfer and robustness issues. The goal of this strategically oriented assessment is to provide an accurate and robust turbulent simulation capability for the CASL community. Metrics of performance will be constructed by comparing different models on a strategically chosen set of problems that represent reactor core sub-systems.

More Details

Effect of hydrogen on tensile strength and ductility of multipass 304L/308L austenitic stainless steel welds

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Balch, Dorian K.; San Marchi, Chris

Austenitic stainless steels such as 304L are frequently used for hydrogen service applications due to their excellent resistance to hydrogen embrittlement. However, welds in austenitic stainless steels often contain microstructures that are more susceptible to the presence of hydrogen. This study examines the tensile strength and ductility of a multi-pass gas tungsten arc weld made on 304L cross-rolled plate using 308L weld filler wire. Sub-sized tensile specimens were used to ensure the entire gage section of each tensile specimen consisted of weld metal. Specimens were extracted in both axial and transverse orientations, and at three different depths within the weld (root, center, and top). Yield strength decreased and ductility increased moving from the root to the top of the weld. A subset of specimens was precharged with hydrogen at 138 MPa (20,000 psi) and 300oC prior to testing, resulting in a uniform hydrogen concentration of 7700 appm. The presence of hydrogen resulted in a slight increase in yield and tensile strength and a roughly 50% decrease in tensile elongation and reduction in area, compared to the hydrogen-free properties.

More Details

The effect of oxygen enrichment on soot formation and thermal radiation in turbulent, non-premixed methane flames

2015 Fall Meeting of the Western States Section of the Combustion Institute, WSSCI 2015

Shaddix, Christopher R.; Williams, Timothy C.

Non-premixed oxy-fuel combustion of natural gas is used in industrial applications where highintensity heat is required, such as glass manufacturing and metal forging and shaping. In these applications, the high flame temperatures achieved by oxy-fuel increases radiative heat transfer to the surfaces of interest and soot formation within the flame is desired for further augmentation of radiation. However, the high energy consumption and cost of traditional methods of oxygen production have limited the penetration of oxy-fuel combustion technologies. New approaches to oxygen production, using ion transport membranes or metal organic frameworks (MOFs), are being developed that may reduce the oxygen production costs associated with conventional cryogenic air separation, but which are likely to be more economical for intermediate levels of oxygen enrichment of air, rather than for the high-purity oxygen that is produced by conventional cryogenic air separation. To determine the influence of oxygen enrichment on soot formation and radiation, we developed a non-premixed coannular burner in which oxygen concentrations and flow rates can be independently varied, to distinguish the effects of turbulent mixing intensity, characteristic flame residence time, and oxygen enrichment on soot formation and flame radiation intensity. Local radiation intensities and soot concentrations have been measured using a thin-film thermopile and planar laser-induced incandescence (LII), respectively. Results show that turbulence intensity has a marked effect on soot formation and thermal radiation. Somewhat surprisingly, soot formation is found to increase as the oxygen concentration decreases from 100% to 50%, for flames in which the turbulence intensity remains constant. At the same time, the thermal radiation from these flames only decreases gradually for an extended range of oxygen concentrations. These results suggest that properly designed oxygen-enriched burners that enhance soot formation for intermediate levels of oxygen purity may be able to achieve similar thermal radiation intensities as traditional oxy-fuel burners utilizing high-purity oxygen.

More Details

Emulating multiple inheritance in Fortran 2003/2008

Scientific Programming

Foulk, James W.

Although the high-performance computing (HPC) community increasingly embraces object-oriented programming (OOP), most HPC OOP projects employ the C++ programming language. Until recently, Fortran programmers interested in mining the benefits of OOP had to emulate OOP in Fortran 90/95. The advent of widespread compiler support for Fortran 2003 now facilitates explicitly constructing object-oriented class hierarchies via inheritance and leveraging related class behaviors such as dynamic polymorphism. Although C++ allows a class to inherit from multiple parent classes, Fortran and several other OOP languages restrict or prohibit explicit multiple inheritance relationships in order to circumvent several pitfalls associated with them. Nonetheless, what appears as an intrinsic feature in one language can be modeled as a user-constructed design pattern in another language. The present paper demonstrates how to apply the facade structural design pattern to support a multiple inheritance class relationship in Fortran 2003. The design unleashes the power of the associated class relationships for modeling complicated data structures yet avoids the ambiguities that plague some multiple inheritance scenarios.

More Details

Effects of non-invasive brain stimulation on associative memory

Brain Research

Matzen, Laura E.; Trumbo, Michael C.S.; Leach, Ryan C.; Leshikar, Eric D.

Associative memory refers to remembering the association between two items, such as a face and a name. It is a crucial part of daily life, but it is also one of the first aspects of memory performance that is impacted by aging and by Alzheimer's disease. Evidence suggests that transcranial direct current stimulation (tDCS) can improve memory performance, but few tDCS studies have investigated its impact on associative memory. In addition, no prior study of the effects of tDCS on memory performance has systematically evaluated the impact of tDCS on different types of memory assessments, such as recognition and recall tests. In this study, we measured the effects of tDCS on associative memory performance in healthy adults, using both recognition and recall tests. Participants studied face-name pairs while receiving either active (30 min, 2 mA) or sham (30 min, 0.1 mA) stimulation with the anode placed at F9 and the cathode placed on the contralateral upper arm. Participants in the active stimulation group performed significantly better on the recall test than participants in the sham group, recalling 50% more names, on average, and making fewer recall errors. However, the two groups did not differ significantly in terms of their performance on the recognition memory test. This investigation provides evidence that stimulation at the time of study improves associative memory encoding, but that this memory benefit is evident only under certain retrieval conditions.

More Details

Research needs for deep boreholes

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Brady, Patrick V.; Mackinnon, Robert J.; Arnold, Bill W.; Hardin, Ernest; Sassani, David C.; Kuhlman, Kristopher L.; Freeze, Geoffrey

While deep borehole disposal of nuclear waste should rely primarily on off-the-shelf technologies pioneered by the oil and gas and geothermal industries, the development of new science and technology will remain important. Key knowledge gaps have been outlined in the research roadmap for deep boreholes (B. Arnold et al, 2012, Research, Development, and Demonstration Roadmap for Deep Borehole Disposal, Sandia National Laboratories, SAND2012-8527P) and in a recent Deep Borehole Science Needs Workshop. Characterizing deep crystalline basement, understanding the nature and role of deep fractures, more precisely age-dating deep groundwaters, and demonstrating long-term performance of seals are all important topics of interest. Overlapping deep borehole and enhanced geothermal technology needs include: quantification of seal material performance/failure, stress measurement beyond the borehole, advanced drilling and completion tools, and better subsurface sensors. A deep borehole demonstration has the potential to trigger more focused study of deep hydrology, high temperature brine-rock interaction, and thermomechanical behavior.

More Details

Small Strain Plasticity Behavior of 304L Stainless Steel in Glass-to-Metal Seal Applications

Conference Proceedings of the Society for Experimental Mechanics Series

Antoun, Bonnie R.; Chambers, Robert S.; Emery, John M.; Tandon, Rajan

Cracks in glass-to-metal seals can be a threat to the hermeticity of isolated electronic components. Design and manufacturing of the materials and processes can be tailored to minimize the residual stresses responsible for cracking. However, this requires high fidelity material modeling accounting for the plastic strains in the metals, mismatched thermal shrinkage and property changes experienced as the glass solidifies during cooling of the assembly in manufacturing. Small plastic strains of just a few percent are typical during processing of glass-to-metal seals and yet can generate substantial tensile stresses in the glass during elastic unloading in thermal cycling. Therefore, experimental methods were developed to obtain very accurate measurements of strain near and just beyond the proportional limit. Small strain tensile characterization experiments were conducted with varying levels and rates of strain ratcheting over the temperatures range of -50 to 550 °C, with particular attention near the glass transition temperature of 500 °C. Additional experiments were designed to quantify the effects of stress relaxation and reloading. The experimental techniques developed and resulting data will be presented. Details of constitutive modeling efforts and glass material experiments and modeling can be found in Chambers et al. (Characterization & modeling of materials in glass-to-metal seals: Part I. SAND14-0192. Sandia National Laboratories, January 2014).

More Details

Numerical simulations of subscale wind turbine rotor inboard airfoils at low Reynolds number

33rd Wind Energy Symposium

Blaylock, Myra L.; Maniaci, David C.; Resor, Brian R.

New blade designs are planned to support future research campaigns at the SWiFT facility in Lubbock, Texas. The sub-scale blades will reproduce specific aerodynamic characteristics of utility-scale rotors. Reynolds numbers for megawatt-, utility-scale rotors are generally vary from 2-8 million. The thickness of inboard airfoils for these large rotors are typically as high as 35-40%. The thickness and the proximity to three-dimensional flow of these airfoils present design and analysis challenges, even at the full scale, but more than a decade of experience with the airfoils in numerical simulation, in the wind tunnel, and in the field has generated confidence in their performance. When used on a sub-scale rotor, Reynolds number regimes are significantly lower for the inboard blade, ranging from 0.7 to 1 million. Performance of the thick airfoils in this regime is uncertain because of the lack of wind tunnel data and the inherent challenge associated with associated numerical simulations. This report documents efforts to determine the most capable analysis tools to support these simulations and to improve understanding of the aerodynamic properties of thick airfoils in this Reynolds number regime. Numerical results from various codes of four airfoils are verified against previously published wind tunnel results where data at those Reynolds numbers are available. Results are then computed for other Reynolds numbers of interest.

More Details

Quantifying sampling noise and parametric uncertainty in atomistic-to-continuum simulations using surrogate models

Multiscale Modeling and Simulation

Salloum, Maher; Sargsyan, Khachik; Jones, Reese E.; Najm, Habib N.; Debusschere, Bert

We present a methodology to assess the predictive fidelity of multiscale simulations by incorporating uncertainty in the information exchanged between the components of an atomisticto-continuum simulation. We account for both the uncertainty due to finite sampling in molecular dynamics (MD) simulations and the uncertainty in the physical parameters of the model. Using Bayesian inference, we represent the expensive atomistic component by a surrogate model that relates the long-term output of the atomistic simulation to its uncertain inputs. We then present algorithms to solve for the variables exchanged across the atomistic-continuum interface in terms of polynomial chaos expansions (PCEs). We consider a simple Couette flow where velocities are exchanged between the atomistic and continuum components, while accounting for uncertainty in the atomistic model parameters and the continuum boundary conditions. Results show convergence of the coupling algorithm at a reasonable number of iterations. The uncertainty in the obtained variables significantly depends on the amount of data sampled from the MD simulations and on the width of the time averaging window used in the MD simulations.

More Details

Self-referenced continuous-variable quantum key distribution protocol

Physical Review X

Soh, Daniel B.S.; Brif, Constantin; Coles, Patrick J.; Lutkenhaus, Norbert; Camacho, Ryan C.; Urayama, Junji; Sarovar, Mohan

We introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice's and Bob's measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.

More Details

Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

Journal of the Electrochemical Society

Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F.S.

We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acousticwave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10.50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10.2000 ng, after gas chromatography separation. Estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.

More Details

A position-aware linear solid constitutive model for peridynamics

Journal of Mechanics of Materials and Structures

Mitchell, John A.; Silling, Stewart; Littlewood, David J.

A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. Improved model behavior in the vicinity of free surfaces is achieved through the application of two influence functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. The model is position-aware in that the influence functions vary over the body and reflect the proximity of each material point to free surfaces. Demonstration calculations on simple benchmark problems show a sharp reduction in error relative to the LPS model.

More Details

Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

International Journal of Hydrogen Energy

Robinson, David; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. A mathematical model is presented as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. We expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

More Details

Stress and strain modeling of low temperature cofired ceramic (LTCC) seal frame and lid

IMAPS/ACerS 11th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2015

Peterson, Kenneth A.; Krueger, Daniel; Porter, John

Low temperature cofired ceramic (LTCC) is established as an excellent packaging technology for high reliability, high density microelectronics. LTCC multichip modules (MCMs) comprising both 'surface mount' and 'chip and wire' technologies provide additional customization for performance. Long term robustness of the packages is impacted by the selection of seal frame and lid materials used to enclose the components inside distinct rooms in LTCC MCMs. An LTCC seal frame and lid combination has been developed that is capable of meeting the sealing and electromagnetic shielding requirements of MCMs. This work analyzes the stress and strain performance of various seal frame and lid materials, sealing materials, and configurations. The application for the MCM will impact selection of the seal frame, lid, and sealing materials based on this analysis.

More Details

Numerical simulation of natural convection in solar cavity receivers

Journal of Solar Energy Engineering, Transactions of the ASME

Hartley, James Y.; Ho, Clifford K.; Christian, Josh

Cavity receivers used in solar power towers and dish concentrators may lose considerable energy by natural convection, which reduces the overall system efficiency. A validated numerical receiver model is desired to better understand convection processes and aid in heat loss minimization efforts. The purpose ofthis investigation was to evaluate heat loss predictions using the commercial computational fluid dynamics (CFD) software packages fluent 13.0 and solidworks flow simulation 2011 against experimentally measured heat losses for a heated cubical cavity receiver model (Kraabel, 1983, "An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity," Proceedings of the ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299-306) and a cylindrical dish receiver model (Taumoefolau et al., 2004, "Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver," ASME J. Sol. Energy Eng., 126(2), pp. 801-807). Simulated convective heat loss was underpredicted by 45% for the cubical cavity when experimental wall temperatures were implemented as isothermal boundary conditions and 32% when the experimental power was applied as a uniform heat flux from the cavity walls. Agreement between software packages was generally within 10%. Convective heat loss from the cylindrical dish receiver model was accurately predicted within experimental uncertainties by both simulation codes using both isothermal and constant heat flux wall boundary conditions except when the cavity was inclined at angles below 15 deg and above 75 deg, where losses were under- and overpredicted by fluent and solidworks, respectively. Comparison with empirical correlations for convective heat loss from heated cavities showed that correlations by Kraabel (1983, "An Experimental Investigation of the Natural Convection From a Side-Facing Cubical Cavity," Proceedings ofthe ASME JSME Thermal Engineering Joint Conference, Vol. 1, pp. 299-306) and for individual heated flat plates oriented to the cavity geometry (Pitts and Sissom, 1998, Schaum's Outline of Heat Transfer, 2nd ed., McGraw Hill, New York, p. 227) predicted heat losses from the cubical cavity to within experimental uncertainties. Correlations by Clausing (1987, "Natural Convection From Isothermal Cubical Cavities With a Variety of Side-Facing Apertures," ASME J. Heat Transfer, 109(2), pp. 407-412) and Paitoonsurikarn et al. (2011, "Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications," ASME J. Sol. Energy Eng. 133(2), p. 021004) were able to do the same for the cylindrical dish receiver. No single correlation was valid for both experimental receivers. The effect ofdifferent turbulence and air-property models within fluent were also investigated and compared in this study. However, no model parameter was found to produce a change large enough to account for the deficient convective heat loss simulated for the cubical cavity receiver case.

More Details

Why do simple algorithms for triangle enumeration work in the real world?

Internet Mathematics

Berry, Jonathan; Fostvedt, Luke A.; Nordman, Daniel J.; Phillips, Cynthia A.; Comandur, Seshadhri; Wilson, Alyson G.

Listing all triangles is a fundamental graph operation. Triangles can have important interpretations in real-world graphs, especially social and other interaction networks. Despite the lack of provably efficient (linear, or slightly super linear) worst-case algorithms for this problem, practitioners run simple, efficient heuristics to find all triangles in graphs with millions of vertices. How are these heuristics exploiting the structure of these special graphs to provide major speedups in running time? We study one of the most prevalent algorithms used by practitioners. A trivial algorithm enumerates all paths of length 2, and checks if each such path is incident to a triangle. A good heuristic is to enumerate only those paths of length 2 in which the middle vertex has the lowest degree. It is easily implemented and is empirically known to give remarkable speedups over the trivial algorithm. We study the behavior of this algorithm over graphs with heavy-tailed degree distributions, a defining feature of real-world graphs. The erased configuration model (ECM) efficiently generates a graph with asymptotically (almost) any desired degree sequence. We show that the expected running time of this algorithm over the distribution of graphs created by the ECM is controlled by the l4/3-norm of the degree sequence. Norms of the degree sequence are a measure of the heaviness of the tail, and it is precisely this feature that allows non trivial speedups of simple triangle enumeration algorithms. As a corollary of our main theorem, we prove expected linear-time performance for degree sequences following a power law with exponent α ≥ 7/3, and non trivial speedup whenever α ∈ (2, 3).

More Details

Assessing the role of mini-applications in predicting key performance characteristics of scientific and engineering applications

Journal of Parallel and Distributed Computing

Barrett, R.F.; Crozier, Paul; Doerfler, Douglas W.; Heroux, Michael A.; Lin, Paul T.; Thornquist, Heidi K.; Trucano, Timothy G.; Vaughan, Courtenay T.

Computational science and engineering application programs are typically large, complex, and dynamic, and are often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and engineering application programs in the context of new, emerging, and future computing architectures, a suite of "miniapps" has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key performance characteristic that does or is expected to significantly impact the runtime performance of an application program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively represent these performance issues. We applied this methodology to three miniapps, examining the linkage between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial steps required to begin to answer the question, "Under what conditions does a miniapp represent a key performance characteristic in a full app?"

More Details

Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of CC double bonds on the peroxy radical chemistry in alcohol oxidation

Proceedings of the Combustion Institute

Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes - prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the -OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These findings suggest that the presence of CC double bonds in alcohols will reduce low-temperature reactivity during autoignition.

More Details

Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions

Proceedings of the Combustion Institute

Bohlin, Alexis; Mann, Markus; Patterson, Brian; Dreizler, Andreas; Kliewer, Christopher

Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman spectroscopy (CARS) is developed utilizing a two-beam phase-matching approach for one-dimensional (1D) measurements demonstrated in an impinging jet burner to probe time-resolved head on quenching (HOQ) of a methane/air premixed flame at Φ = 1.0 and Reynolds number = 5000. Single-laser-shot 1D temperature profiles are obtained over a distance of at least 4 mm by fitting the pure-rotational N2 CARS spectra to a spectral library calculated from a time-domain CARS code. An imaging resolution of ∼61 μm is obtained in the 1D-CARS measurements. The acquisition of single-shot 1D CARS measurements, as opposed to traditional point-wise CARS techniques, enables new spatially correlated conditional statistics to be determined, such as the position, magnitude, and fluctuations of the instantaneous temperature gradient. The temperature gradient increases as the flame approaches the metal surface, and decreases during quenching. The standard deviation of the temperature gradient follows the same trend as the temperature gradient, increasing as the flame front approaches the surface, and decreasing after quenching.

More Details

Understanding the reaction pathways in premixed flames fueled by blends of 1,3-butadiene and n-butanol

Proceedings of the Combustion Institute

Hansen, Nils; Braun-Unkhoff, M.; Kathrotia, T.; Lucassen, A.; Yang, B.

The oxidation of 1,3-butadiene/n-butanol flames was studied in a combined experimental and modeling work. The goal is to provide a detailed combustion chemistry model that allows for identification of the important pathways for butadiene and butanol oxidation as well as the formation of soot precursors and aromatics. Therefore, the chemical composition has been investigated for three low-pressure (20-30 Torr) premixed flames, with different shares of butanol ranging between 25% and 75% compared to butadiene in 50% argon. Mole fraction profiles of reactants, products, and intermediates including C3Hx and C4Hx radicals as well as mono-aromatics such as benzyl radicals, were measured quantitatively as a function of height above burner surface employing flame-sampled molecular-beam mass spectrometry (MBMS) utilizing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The comparison of measured species profiles with modeling results provides a comprehensive view of the reaction model's quality and predictive capability with respect to the combustion chemistry of 1,3-butadiene and n-butanol under the current low-pressure, high-temperature conditions. In general, a good agreement was found between experimental and modeled results. Reaction flux and sensitivity analysis were used to get more insights into the combustion of the fuels.

More Details

Experimental and modelling study of speciation and benzene formation pathways in premixed 1-hexene flames

Proceedings of the Combustion Institute

Nawdiyal, A.; Hansen, Nils; Zeuch, T.; Seidel, L.; Mauß, F.

An existing detailed and broadly validated kinetic scheme is augmented to capture the flame chemistry of 1-hexene under stoichiometric and fuel rich conditions including benzene formation pathways. In addition, the speciation in a premixed stoichiometric 1-hexene flame (flat-flame McKenna-type burner) has been studied under a reduced pressure of 20-30 mbar applying flame-sampling molecular-beam time-of-flight mass spectrometry and photoionization by tunable vacuum-ultraviolet synchrotron radiation. Mole fraction profiles of 40 different species have been measured and validated against the new detailed chemical reaction model consisting of 275 species and 3047 reversible elementary reactions. A good agreement of modelling results with the experimentally observed mole fraction profiles has been found under both stoichiometric and fuel rich conditions providing a sound basis for analyzing benzene formation pathways during 1-hexene combustion. The analysis clearly shows that benzene formation via the fulvene intermediate is a very important pathway for 1-hexene.

More Details

In-cylinder soot precursor growth in a low-temperature combustion diesel engine: Laser-induced fluorescence of polycyclic aromatic hydrocarbons

Proceedings of the Combustion Institute

Leermakers, C.A.J.; Musculus, Mark P.B.

The growth of poly-cyclic aromatic hydrocarbon (PAH) soot precursors are observed using a two-laser technique combining laser-induced fluorescence (LIF) of PAH with laser-induced incandescence (LII) of soot in a diesel engine under low-temperature combustion (LTC) conditions. The broad mixture distributions and slowed chemical kinetics of LTC "stretch out" soot-formation processes in both space and time, thereby facilitating their study. Imaging PAH-LIF from pulsed-laser excitation at three discrete wavelengths (266, 532, and 633 nm) reveals the temporal growth of PAH molecules, while soot-LII from a 1064-nm pulsed laser indicates inception to soot. The distribution of PAH-LIF also grows spatially within the combustion chamber before soot-LII is first detected. The PAH-LIF signals have broad spectra, much like LII, but typically with spectral profile that is inconsistent with laser-heated soot. Quantitative natural-emission spectroscopy also shows a broad emission spectrum, presumably from PAH chemiluminescence, temporally coinciding with of the PAH-LIF.

More Details

Combined effects of flow/spray interactions and EGR on combustion variability for a stratified DISI engine

Proceedings of the Combustion Institute

Zeng, Wei; Sjoberg, Carl M.; Reuss, David L.

This study investigates combustion variability of a stratified-charge direct-injection spark ignited (DISI) engine, operated with near-TDC injection of E70 fuel and a spark timing that occurs during the early part of the fuel injection. Using EGR, low engine-out NOx can be achieved, but at the expense of increased combustion variability at higher engine speeds. Initial motored tests at different speeds reveal that the in-cylinder gas flow becomes sufficiently strong at 2000 rpm to cause significant cycle-to-cycle variations of the spray penetration. Hence, the fired tests focus on operation at 2000 rpm with N2 dilution ([O2] = 19% and 21%) to simulate EGR. In-cylinder flow, spray, and early-flame measurements are correlated to reveal their effect on the combustion variability. Results reveal two types of flow/spray-interactions that predict the likelihood of a partial burn. (1) Proper flow direction before injection with a more collapsed spray leads to high kinetic energy of the flow during injection, thus generating a rapid early burn, which ensures complete combustion, regardless of the EGR level. (2) Improper flow direction and less collapsed spray generate low flow energy during the early phase of combustion. For this second type of flow/spray-interaction, application of EGR results in a partial-burn frequency of 30%, whereas without EGR, early combustion is shown to be insensitive to flow variations. Flame-probability maps illustrate that the partial-burn cycles for operation with EGR have a weak flame development in that the flame does not develop uniformly and reliably from the spark plug. Without EGR, the flame development is more repeatable regardless of the type of flow/spray-interaction, at the expense of higher NOx emissions.

More Details

Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

Proceedings of the Combustion Institute

Lucassen, A.; Park, Sungwoo; Hansen, Nils; Sarathy, S.M.

This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model's capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed.

More Details

A sophisticated model to predict ash inhibition during combustion of pulverized char particles

Proceedings of the Combustion Institute

Niu, Yanqing; Shaddix, Christopher R.

Final burnout of char particles from practical fuels such as coal and biomass occurs in the presence of a large ash component. Also, newly utilized coal resources, such as those from India, often contain much larger ash fractions than have traditionally been utilized. In the past, the inhibitory influence of ash on pulverized coal particle combustion has been most frequently modeled using an ash film model, though such films are rarely found when examining partially combusted particles. Conversely, some measurements have suggested that mineral components exposed on the surface of burning pulverized coal (pc) particles may diffuse back into the char matrix, the effect of which can be modeled as an ash dilution effect. To explore the implications of these different ash inhibition models on the temporal evolution of char combustion during burnout, we have developed a new computational model that considers the possibility of an ash film effect, an ash dilution effect, or some arbitrary combination of the two effects acting in tandem, which is the most realistic scenario. This new model predicts that restricted diffusion through the ash film has a significant impact on the char burnout rate throughout its lifetime, whereas char dilution only inhibits combustion significantly when most of the char has been consumed and the combustion mode shifts from predominantly external diffusion control to mixed diffusion control, with sensitivity to both external and internal diffusion resistance. The comparison of the model predictions with experimental results also confirms the previously suggested need to include gasification reaction steps when modeling coal char combustion.

More Details
Results 49901–50000 of 99,299
Results 49901–50000 of 99,299