Publications

8 Results

Search results

Jump to search filters

Schedule Management Optimization (SMO) Domain Model (V.1.2)

Backlund, Peter B.; Melander, Darryl J.; Pierson, Adam J.; Flory, John A.; Dessanti, Alexander D.; Henry, Stephen M.; Gauthier, John H.

Schedule Management Optimization (SMO) is a tool for automatically generating a schedule of project tasks. Project scheduling is traditionally achieved with the use of commercial project management software or case-specific optimization formulations. Commercial software packages are useful tools for managing and visualizing copious amounts of project task data. However, their ability to automatically generate optimized schedules is limited. Furthermore, there are many real-world constraints and decision variables that commercial packages ignore. Case-specific optimization formulations effectively identify schedules that optimize one or more objectives for a specific problem, but they are unable to handle a diverse selection of scheduling problems. SMO enables practitioners to generate optimal project schedules automatically while considering a broad range of real-world problem characteristics. SMO has been designed to handle some of the most difficult scheduling problems – those with resource constraints, multiple objectives, multiple inventories, and diverse ways of performing tasks. This report contains descriptions of the SMO modeling concepts and explains how they map to real-world scheduling considerations.

More Details

The CPAT 2.0.2 Domain Model - How CPAT 2.0.2 "Thinks" From an Analyst Perspective

Waddell, Lucas W.; Muldoon, Frank; Melander, Darryl J.; Backlund, Peter B.; Henry, Stephen M.; Hoffman, Matthew J.; Nelson, April M.; Lawton, Craig R.; Rice, Roy E.

To help effectively plan the management and modernization of their large and diverse fleets of vehicles, the Program Executive Office Ground Combat Systems (PEO GCS) and the Program Executive Office Combat Support and Combat Service Support (PEO CS &CSS) commissioned the development of a large - scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This report contains a description of the organizational fleet structure and a thorough explanation of the business rules that the CPAT formulation follows involving performance, scheduling, production, and budgets. This report, which is an update to the original CPAT domain model published in 2015 (SAND2015 - 4009), covers important new CPAT features. This page intentionally left blank

More Details

The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2)

Waddell, Lucas W.; Muldoon, Frank; Henry, Stephen M.; Hoffman, Matthew J.; Nelson, April M.; Backlund, Peter B.; Melander, Darryl J.; Lawton, Craig R.; Rice, Roy E.

In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor- ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.

More Details

Classifier-Guided Sampling for Complex Energy System Optimization

Backlund, Peter B.; Eddy, John P.

This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of o bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.

More Details

Autonomous microgrid design using classifier-guided sampling

Proceedings of the ASME Design Engineering Technical Conference

Backlund, Peter B.; Eddy, John P.

Identifying high-performance, system-level microgrid designs is a significant challenge due to the overwhelming array of possible configurations. Uncertainty relating to loads, utility outages, renewable generation, and fossil generator reliability further complicates this design problem. In this paper, the performance of a candidate microgrid design is assessed by running a discrete event simulation that includes extended, unplanned utility outages during which microgrid performance statistics are computed. Uncertainty is addressed by simulating long operating times and computing average performance over many stochastic outage scenarios. Classifier-guided sampling, a Bayesian classifier-based optimization algorithm for computationally expensive design problems, is used to search and identify configurations that result in reduced average load not served while not exceeding a predetermined microgrid construction cost. The city of Hoboken, NJ, which sustained a severe outage following Hurricane Sandy in October, 2012, is used as an example of a location in which a well-designed microgrid could be of great benefit during an extended, unplanned utility outage. The optimization results illuminate design trends and provide insights into the traits of high-performance configurations.

More Details
8 Results
8 Results