Publications

Results 65201–65400 of 99,299

Search results

Jump to search filters

Investment planning for electric power systems under terrorist threat

IEEE Transactions on Power Systems

Romero, Natalia; Xu, Ningxiong; Nozick, Linda K.; Dobson, Ian; Jones, Dean

Access to electric power is critical to societal welfare. In this paper, we analyze the interaction between a defender and a terrorist who threatens the operation of an electric power system. The defender wants to find a strategic defense to minimize the consequences of an attack. Both parties have limited budgets and behave in their own self-interest. The problem is formulated as a multi-level mixed-integer programming problem. A Tabu Search with an embedded greedy algorithm for the attack problem is implemented to find the optimum defense strategy. We apply the algorithm to a 24-bus network for a combination of four different defense budgets, three attack budgets, and three assumptions as to how the terrorists craft their attacks. © 2006 IEEE.

More Details

Model-based design of an automotive-scale, metal hydride hydrogen storage system

International Journal of Hydrogen Energy

Johnson, Terry A.; Kanouff, Michael P.; Dedrick, Daniel E.; Evans, Gregory H.; Jorgensen, Scott W.

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage demonstration system using sodium alanates. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

More Details

Handbook of Best Practices for Geothermal Drilling

Blankenship, Douglas A.

This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the GIA web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven.

More Details

US public perspectives on security

Herron, Kerry G.; Jenkins-Smith, Hank C.; Silva, Carol L.

We report findings from a national Internet survey and a subset of questions administered by telephone in mid-2011 on public assessments of contemporary and emerging interstate nuclear threats, support for strategic arms control, and preferences for responding to limited nuclear attacks on the United States. Additionally, we analyze public views of the threat of terrorism, including cyber attacks, assessments of progress in the struggle against terrorism, and preferences for responding to an act of radiological terrorism against the United States. Also, we report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2011 on US energy and environmental security. Key areas of investigation include public views on energy requirements, preferences for energy sources, energy conservation versus development, energy independence, implications of events at Fukushima, Japan, for US public support of nuclear generation, preferences for managing used nuclear fuel, and trust in nuclear risk assessments from government and other public sources. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

More Details

Metal Corrosion in a Supercritical Carbon Dioxide - Liquid Sodium Power Cycle

Moore, Robert C.; Conboy, Thomas M.

A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO2 is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

More Details

TriBITS Lifecycle Model: A Lean/Agile Software Lifecycle Model for Research-based Computational Science and Engineering and Applied Mathematical Software (V.1.0)

Willenbring, James M.; Heroux, Michael A.

Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.

More Details

Decision Insight into Stakeholder Conflict for ERN

Siirola, John D.; Tidwell, Vincent C.; Warrender, Christina E.; Morrow, James D.; Benz, Zachary O.

Participatory modeling has become an important tool in facilitating resource decision making and dispute resolution. Approaches to modeling that are commonly used in this context often do not adequately account for important human factors. Current techniques provide insights into how certain human activities and variables affect resource outcomes; however, they do not directly simulate the complex variables that shape how, why, and under what conditions different human agents behave in ways that affect resources and human interactions related to them. Current approaches also do not adequately reveal how the effects of individual decisions scale up to have systemic level effects in complex resource systems. This lack of integration prevents the development of more robust models to support decision making and dispute resolution processes. Development of integrated tools is further hampered by the fact that collection of primary data for decision-making modeling is costly and time consuming. This project seeks to develop a new approach to resource modeling that incorporates both technical and behavioral modeling techniques into a single decision-making architecture. The modeling platform is enhanced by use of traditional and advanced processes and tools for expedited data capture. Specific objectives of the project are: (1) Develop a proof of concept for a new technical approach to resource modeling that combines the computational techniques of system dynamics and agent based modeling, (2) Develop an iterative, participatory modeling process supported with traditional and advance data capture techniques that may be utilized to facilitate decision making, dispute resolution, and collaborative learning processes, and (3) Examine potential applications of this technology and process. The development of this decision support architecture included both the engineering of the technology and the development of a participatory method to build and apply the technology. Stakeholder interaction with the model and associated data capture was facilitated through two very different modes of engagement, one a standard interface involving radio buttons, slider bars, graphs and plots, while the other utilized an immersive serious gaming interface. The decision support architecture developed through this project was piloted in the Middle Rio Grande Basin to examine how these tools might be utilized to promote enhanced understanding and decision-making in the context of complex water resource management issues. Potential applications of this architecture and its capacity to lead to enhanced understanding and decision-making was assessed through qualitative interviews with study participants who represented key stakeholders in the basin.

More Details

Final Report for the DOE Metal Hydride Center of Excellence

Klebanoff, Leonard E.

This report summarizes the R&D activities within the U.S. Department of Energy Metal Hydride Center of Excellence (MHCoE) from March 2005 to June 2010. The purpose of the MHCoE has been to conduct highly collaborative and multi-disciplinary applied R&D to develop new reversible hydrogen storage materials that meet or exceed DOE 2010 and 2015 system goals for hydrogen storage materials. The MHCoE combines three broad areas: mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials), materials development (in which new materials are synthesized and characterized) and system design and engineering (which allow these new materials to be realized as practical automotive hydrogen storage systems). This Final Report summarizes the organization and execution of the 5-year research program to develop practical hydrogen storage materials for light duty vehicles. Major results from the MHCoE are summarized, along with suggestions for future research areas.

More Details

Wind Energy Computerized Maintenance Management System (CMMS): Data Collection Recommendations for Reliability Analysis

Hines, Valerie A.; Ogilvie, Alistair B.

This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific data recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of operating wind turbines. This report is intended to help develop a basic understanding of the data needed for reliability analysis from a Computerized Maintenance Management System (CMMS) and other data systems. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and analysis and reporting needs. The 'Motivation' section of this report provides a rationale for collecting and analyzing field data for reliability analysis. The benefits of this type of effort can include increased energy delivered, decreased operating costs, enhanced preventive maintenance schedules, solutions to issues with the largest payback, and identification of early failure indicators.

More Details

Study of Radiative Blast Waves Generated on the Z-Beamlet Laser

Edens, Aaron; Schwarz, Jens

This document describes the original goals of the project to study the Vishniac Overstability on blast waves produced using the Z-Beamlet laser facility as well as the actual results. The proposed work was to build on earlier work on the facility and result in the best characterized set of data for such phenomena in the laboratory. To accomplish the goals it was necessary to modify the existing probe laser at the facility so that it could take multiple images over the course of 1-2 microseconds. Troubles with modifying the probe laser are detailed as well as the work that went into said modifications. The probe laser modification ended up taking the entire length of the project and were the major accomplishment of the research.

More Details

Development of a Structural Health Monitoring System for the Life Assessment of Critical Transportation Infrastructure

Roach, Dennis P.

Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

More Details

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides

Pratt, Joseph W.; Cordaro, Joseph G.; Sartor, George B.; Dedrick, Daniel E.

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70°C. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 °C lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.

More Details

A C. elegans-Based Foam for Rapid On-Site Detection of Residual Live Virus

Negrete, Oscar N.; Kozina, Carol L.; Tucker, Mark D.; Hardesty, Jasper

In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

More Details

Environmental Management System (EMS) Objectives & Targets: Annual Results Summary – FY2011

Vetter, Douglas W.

Sandia National Laboratories/New Mexico's (SNL/NM) Environmental Management System is the integrated approach for members of the workforce to identify and manage environmental risks. Each Fiscal Year (FY) SNL/NM performs an analysis to identify environmental aspects, and the environmental programs associated with them are charged with the task of routinely monitoring and measuring the objectives and targets that are established to mitigate potential impacts of SNL/NM's operations on the environment. An annual summary of the results achieved towards meeting established objectives and targets provides a connection to, and rational for, annually revised environmental aspects. The purpose of this document is to summarize the results achieved and documented in FY2011.

More Details

Using the Sirocco File System for high-bandwidth checkpoints

Klundt, Ruth A.; Ward, Harry L.

The Sirocco File System, a file system for exascale under active development, is designed to allow the storage software to maximize quality of service through increased flexibility and local decision-making. By allowing the storage system to manage a range of storage targets that have varying speeds and capacities, the system can increase the speed and surety of storage to the application. We instrument CTH to use a group of RAM-based Sirocco storage servers allocated within the job as a high-performance storage tier to accept checkpoints, allowing computation to potentially continue asynchronously of checkpoint migration to slower, more permanent storage. The result is a 10-60x speedup in constructing and moving checkpoint data from the compute nodes. This demonstration of early Sirocco functionality shows a significant benefit for a real I/O workload, checkpointing, in a real application, CTH. By running Sirocco storage servers within a job as RAM-only stores, CTH was able to store checkpoints 10-60x faster than storing to PanFS, allowing the job to continue computing sooner. While this prototype did not include automatic data migration, the checkpoint was available to be pushed or pulled to disk-based storage as needed after the compute nodes continued computing. Future developments include the ability to dynamically spawn Sirocco nodes to absorb checkpoints, expanding this mechanism to other fast tiers of storage like flash memory, and sharing of dynamic Sirocco nodes between multiple jobs as needed.

More Details

Reactive power interconnection requirements for PV and wind plants : recommendations to NERC

Ellis, Abraham

Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

More Details

Summary of Monitoring Station Component Evaluation Project 2009-2011

Hart, Darren M.

Sandia National Laboratories (SNL) is regarded as a center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for ground-based nuclear explosion monitoring (GNEM) systems. This project will sustain and enhance our component evaluation capabilities. In addition, new sensor technologies that could greatly improve national monitoring system performance will be sought and characterized. This work directly impacts the Ground-based Nuclear Explosion Monitoring mission by verifying that the performance of monitoring station sensors and instrumentation is characterized and suitable to the mission. It enables the operational monitoring agency to deploy instruments of known capability and to have confidence in operational success. This effort will ensure that our evaluation capabilities are maintained for future use.

More Details

Interface Modeling to Predict Well Casing Damage for Big Hill Strategic Petroleum Reserve

Park, Byoung

Oil leaks were found in well casings of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interface between the caprock and top of salt. This damage could be caused by interface movement induced by cavern volume closure due to salt creep. A three dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate shear and vertical displacements across each interface. The model contains interfaces between each lithology and a shear zone to examine the interface behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed by shear stress that exceeded shear strength due to the horizontal movement of the top of salt relative to the caprock, and tensile stress due to the downward movement of the top of salt from the caprock, respectively. The casings of Caverns 101, 110, 111 and 114, located at the far ends of the field, are predicted to be failed by shear stress in the near future. The casings of inmost Caverns 107 and 108 are predicted to be failed by tensile stress in the near future.

More Details

New thin materials for electronics

Schwartzberg, Adam

The work described in this report is from an Early Career LDRD to develop and investigate novel thin film organic conductors with drastically improved electronic properties over the current state of the art. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory a Langmuir-Blodgett trough (LB) was built from scavenged parts and added to a scanning Raman microscope at LBNL. First order thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have helped position Sandia for advances in this area of MOF film creation. In collaboration with the Molecular Foundry at Lawrence Berkeley National Laboratory, a Langmuir-Blodgett trough (LB) was built and added to a scanning Raman microscope at LBNL. Thin peptoid film samples were fabricated for testing Raman and photoluminescence imagining techniques. Tests showed that a single peptoid sheet can be successfully imaged using confocal Raman spectroscopy, and a peptoid sheet can be successfully imaged using near-field photoluminescence at a resolution less than 70 nm. These results have positioned Sandia for advance in this area of MOF film creation. The interactions with LBNL also led to award of two user projects at the Molecular Foundry at LBNL led by current Sandia staff and the appointment of a current Sandia staff to the Molecular Foundry User Executive Committee.

More Details

The potential, limitations, and challenges of divide and conquer quantum electronic structure calculations on energetic materials

Tucker, Jon R.; Magyar, Rudolph J.

High explosives are an important class of energetic materials used in many weapons applications. Even with modern computers, the simulation of the dynamic chemical reactions and energy release is exceedingly challenging. While the scale of the detonation process may be macroscopic, the dynamic bond breaking responsible for the explosive release of energy is fundamentally quantum mechanical. Thus, any method that does not adequately describe bonding is destined to lack predictive capability on some level. Performing quantum mechanics calculations on systems with more than dozens of atoms is a gargantuan task, and severe approximation schemes must be employed in practical calculations. We have developed and tested a divide and conquer (DnC) scheme to obtain total energies, forces, and harmonic frequencies within semi-empirical quantum mechanics. The method is intended as an approximate but faster solution to the full problem and is possible due to the sparsity of the density matrix in many applications. The resulting total energy calculation scales linearly as the number of subsystems, and the method provides a path-forward to quantum mechanical simulations of millions of atoms.

More Details

Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1

Ferreira, Summer R.

In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

More Details

Photoelectronic Characterization of Heterointerfaces

Brumbach, Michael T.

In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

More Details
Results 65201–65400 of 99,299
Results 65201–65400 of 99,299