Publications

Results 1–25 of 29

Search results

Jump to search filters

Additive Manufacturing of Polymers: Materials Opportunities and Emerging Applications

Black, Hayden T.; Celina, Mathias C.; McElhanon, James R.

Additive manufacturing (AM) has enabled the rapid prototyping of structures with complex geometries constructed via computer aided design (CAD). In recent years, AM has extended beyond simple prototyping and has begun to play a role in the fabrication of active components, especially for applications that do not require materials with robust mechanical properties (i.e. electronic components and biomedical scaffolds). This report reviews the current state of 3D printing with respect to polymeric and composite materials, focusing on applications, printing processes, and material selection perspectives. A particular focus is placed on the polymer chemistry of additive manufacturing in order to elucidate current materials limitations, R&D trends and developmental opportunities. Some unconventional thermoset cure reactions are proposed for AM which may overcome current limitations. In addition, potential degradation characteristics of AM polymer materials and expected property variations in comparison with traditional processing are discussed, which draws attention to the complexity of the structure/processing/property relationships for the optimization of innovative materials. AM polymer manufacturing and 3D printing approaches hold tremendous promises as long as polymer chemistry, material physics and processing aspects (cure on demand) are jointly embraced within evolving research strategies.

More Details

Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Buchheit, Thomas E.; Susan, D.F.; Massad, Jordan M.; Noebe, Ronald D.; McElhanon, James R.

A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amounts of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. The unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.

More Details

Degradation of different elastomeric polymers in simulated geothermal environments at 300°C

Polymer Degradation and Stability

Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica M.; McElhanon, James R.; Blankenship, Douglas A.

This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300°C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomeric polymer composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This paper discusses the degradation mechanisms of the polymers under the aforementioned conditions.

More Details

Interrogating adhesion using fiber Bragg grating sensing technology

Proceedings of SPIE - The International Society for Optical Engineering

Rasberry, Roger D.; Rohr, Garth R.; Miller, William K.; Davis, Ryan A.; Olson, Walter R.; Calkins, David C.; Roach, R.A.; Walsh, David S.; McElhanon, James R.

The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

More Details

Evaluation of the Performance of O-rings Made with Different Elastomeric Polymers in Simulated Geothermal Environments at 300°C

Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica M.; McElhanon, James R.; Blankenship, Douglas A.

This paper aims to evaluate the survival of O-rings made with six different elastomeric polymers, EPDM, type I- and II-FKM, FEPM, FFKM, and FSR, in five different simulated geothermal environments at 300°C. It further defines the relative strengths and weaknesses of the materials in each environment. The environments tested were: 1) non-aerated steam-cooling cycles, 2) aerated steam-cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. Following exposure, the extent of oxidation, oxidationinduced degradation, thermal behaviors, micro-defects, permeation depths of ionic species present in environments throughout the O-ring, silicate-related scale-deposition, and changes in mechanical properties were assessed.

More Details
Results 1–25 of 29
Results 1–25 of 29