Publications

Results 9501–9600 of 96,771

Search results

Jump to search filters

Preliminary Implementation of Two-Dimensional Cartesian Solver in CTF-R

Bullerwell, Lance; Porter, N.W.; Mousseau, Vincent A.

Sub-channel codes are one of the the modeling and simulation tools used for thermal-hydraulic analysis of nuclear reactors. A few examples of such sub-channel codes are the COolant Boiling in Rod Arrays (COBRA) family of codes. The approximations that are used to simplify the fluid conservation equations into sub-channel form, mainly that of axially-dominated flow, lead to noticeable limitations on sub-channels solvers for problems with significant flow in lateral directions. In this report, a two-dimensional Cartesian solver is developed and implemented within CTF-R, which is the residual solver in the North Carolina State University version of COBRA-TF (CTF). The new solver will enable CTF to simulate flow that is not axially-dominated. The appropriate Cartesian forms of the conservation equations are derived and implemented in the solver. Once the conservation equations are established, the process of constructing the matrix system was altered to solve a two-dimensional staggered grid system. A simple case was used to test that the two-dimensional Cartesian solver is accurate. The test problem does not include any source terms or flow in the lateral direction. The results show that the solver was able to run the simple case and converge to a steady-state solution. Future work will focus on testing existing capabilities by using test cases that include transients and equation cross-terms. Future work will also include adding additional capabilities such as enabling the solver to include cases with source terms and three dimensional cases.

More Details

Time-stepping DPG formulations for the heat equation

Computers and Mathematics with Applications

Laros, James H.; Henneking, Stefan

For a wide range of PDEs, the discontinuous Petrov–Galerkin (DPG) methodology of Demkowicz and Gopalakrishnan provides discrete stability starting from a coarse mesh and minimization of the residual in a user-controlled norm, among other appealing features. Research on DPG for transient problems has mainly focused on spacetime discretizations, which has theoretical advantages, but practical costs for computations and software implementations. The sole examination of time-stepping DPG formulations was performed by Führer, Heuer, and Gupta, who applied Rothe's method to an ultraweak formulation of the heat equation to develop an implicit time-stepping scheme; their work emphasized theoretical results, including error estimates in time and space. In the present work, we follow Führer, Heuer, and Gupta in examining the heat equation; our focus is on numerical experiments, examining the stability and accuracy of several formulations, including primal as well as ultraweak, and explicit as well as implicit and Crank–Nicolson time-stepping schemes. We are additionally interested in communication-avoiding algorithms, and we therefore include a highly experimental formulation that places all the trace terms on the right-hand side of the equation.

More Details

An efficient method to estimate the probability density of seismic Green's functions

Poppeliers, Christian P.; Preston, Leiph A.

We present a computationally efficient method to approximate the probability distribution of seismic Green's functions given the uncertainty of an Earth model. The method is based on the Karhunen-Loève (KL) theorem and an approximation of the Green's function (or seismogram) covariance. Using Monte Carlo (MC) simulations as a control case, we demonstrate that our KL-based method can accurately reproduce a probability distribution of seismograms that results from an uncertain Earth model for a MC-derived seismogram covariance. We then describe a method to estimate the covariance of the seismograms resulting from those Earth models that is not based on MC simulations. We use the estimated Green's function covariance in conjunction with our KL-based method to produce a Green's function probability distribution, and compare that distribution to a Green's function probability distribution produced using a MC finite difference method. We find that the Green's function probability distribution approximated using our KL-based method generally mimics that produced using the MC simulations, especially for direct-arriving body waves. However the accuracy of the KL-based method generally decreases for later times in the simulated Green's function distribution.

More Details

Characterization of Particle and Heat Losses from a High-Temperature Particle Receiver

Ho, Clifford K.; Ortega, Jesus D.; Vorobieff, Peter; Mohan, Gowtham; Glen, Andrew G.; Sanchez, A.L.; Dexheimer, Darielle D.; Schroeder, Nathan; Martins, Vanderlei

High-temperature particle receivers are being pursued to enable next-generation concentrating solar thermal power (CSP) systems that can achieve higher temperatures (> 700 °C) to enable more efficient power cycles, lower overall system costs, and emerging CSP-based process-heat applications. The objective of this work was to develop characterization methods to quantify the particle and heat losses from the open aperture of the particle receiver. Novel camera- based imaging methods were developed and applied to both laboratory-scale and larger 1 MWt on-sun tests at the National Solar Thermal Test Facility in Albuquerque, New Mexico. Validation of the imaging methods was performed using gravimetric and calorimetric methods. In addition, conventional particle-sampling methods using volumetric particle-air samplers were applied to the on-sun tests to compare particle emission rates with regulatory standards for worker safety and pollution. Novel particle sampling methods using 3-D printed tipping buckets and tethered balloons were also developed and applied to the on-sun particle-receiver tests. Finally, models were developed to simulate the impact of particle size and wind on particle emissions and concentrations as a function of location. Results showed that particle emissions and concentrations were well below regulatory standards for worker safety and pollution. In addition, estimated particle temperatures and advective heat losses from the camera-based imaging methods correlated well with measured values during the on-sun tests.

More Details

A variational phase-field model For ductile fracture with coalescence dissipation

Computational Mechanics

Hu, Tianchen; Talamini, Brandon T.; Stershic, Andrew J.; Tupek, Michael R.; Dolbow, John E.

A novel phase-field model for ductile fracture is presented. The model is developed within a consistent variational framework in the context of finite-deformation kinematics. A novel coalescence dissipation introduces a new coupling mechanism between plasticity and fracture by degrading the fracture toughness as the equivalent plastic strain increases. The proposed model is compared with a recent alternative where plasticity and fracture are strongly coupled. Several representative numerical examples motivate specific modeling choices. In particular, a linear crack geometric function provides an “unperturbed” ductile response prior to crack initiation, and Lorentz-type degradation functions ensure that the critical fracture strength remains independent of the phase-field regularization length. In addition, the response of the model is demonstrated to converge with a vanishing phase-field regularization length. The model is then applied to calibrate and simulate a three-point bending experiment of an aluminum alloy specimen with a complex geometry. The effect of the proposed coalescence dissipation coupling on simulations of the experiment is first investigated in a two-dimensional plane strain setting. The calibrated model is then applied to a three-dimensional calculation, where the calculated load-deflection curves and the crack trajectory show excellent agreement with experimental observations. Finally, the model is applied to simulate crack nucleation and growth in a specimen from a recent Sandia Fracture Challenge.

More Details

FY21 Status Report: Probabilistic SCC Model for SNF Dry Storage Canisters

Porter, N.W.; Brooks, Dusty M.; Bryan, Charles R.; Katona, Ryan M.; Schaller, Rebecca S.

Stress corrosion cracking (SCC) is an important failure degradation mechanism for storage of spent nuclear fuel. Since 2014, Sandia National Laboratories has been developing a probabilistic methodology for predicting SCC. The model is intended to provide qualitative assessment of data needs, model sensitivities, and future model development. In fiscal year 2021, improvement of the SCC model focused on the salt deposition, maximum pit size, and crack growth rate models.

More Details

Biosynthesis of Zinc Oxide Nanoparticles using Fungal Filtrates

Moormann, Garrett M.; Bachand, George B.

Fungi produce and excrete various proteins, enzymes, and polysaccharides, which may be used for the synthesis of nanoparticles. This study investigated the effect an anion species on the synthesis of ceramic nanoparticles using fungal filtrates. In this work, ceramic zinc oxide (ZnO) nanoparticles ranging between 1 nm and 1000 nm were successfully synthesized using three different filamentous fungi: Aspergillus sp., Penicillium sp., and Paecilomyces variotti. Each fungus was cultured, and the filtrate was extracted and individually exposed to zinc nitrate, zinc sulfate, or zinc chloride. The formation of nanoparticles was characterized using UV-visible spectrophotometry (UV-Vis), fluorescence microscopy, and with transmission electron microscopy (TEM) analyses. UV-Vis spectra exhibited broad increases in the absorption across the range of 200 nm - 800 nm, which corresponded to the formation of ZnO nanoparticles under various conditions. Nanoparticle formation was confirmed with fluorescence microscopy and TEM analysis and determined to form particles with an irregular spherical shape. To date, our work demonstrates that the ability of fungi to synthesize ZnO nanoparticles is not genus/species-specific but is dependent on the starting composition of a given metal salt.

More Details

Disconnection-Mediated Transition in Segregation Structures at Twin Boundaries

Journal of Physical Chemistry Letters

Hu, Chongze H.; Medlin, Douglas L.; Dingreville, Remi P.

Twin boundaries play an important role in the thermodynamics, stability, and mechanical properties of nanocrystalline metals. Understanding their structure and chemistry at the atomic scale is key to guide strategies for fabricating nanocrystalline materials with improved properties. We report an unusual segregation phenomenon at gold-doped platinum twin boundaries, which is arbitrated by the presence of disconnections, a type of interfacial line defect. By using atomistic simulations, we show that disconnections containing a stacking fault can induce an unexpected transition in the interfacial-segregation structure at the atomic scale, from a bilayer, alternating-segregation structure to a trilayer, segregation-only structure. This behavior is found for faulted disconnections of varying step heights and dislocation characters. Supported by a structural analysis and the classical Langmuir-McLean segregation model, we reveal that this phenomenon is driven by a structurally induced drop of the local pressure across the faulted disconnection accompanied by an increase in the segregation volume.

More Details

Continued Investigations of Respirable Release Fractions for Stress Corrosion Crack-Like Geometries

Durbin, S.G.; Pulido, Ramon P.; Perales, Adrian G.; Lindgren, Eric R.; Jones, Philip G.; Mendoza, Hector M.; Phillips, Jesse P.; Lanza, M.; Casella, A.

The formation of a stress corrosion crack (SCC) in the canister wall of a dry cask storage system (DCSS) has been identified as a potential issue for the long-term storage of spent nuclear fuel. The presence of an SCC in a storage system could represent a through-wall flow path from the canister interior to the environment. Modern, vertical DCSSs are of particular interest due to the commercial practice of using relatively high backfill pressures (up to approximately 800 kPa) in the canister to enhance internal natural convection. This pressure differential offers a comparatively high driving potential for blowdown of any particulates that might be present in the canister. In this study, the rates of gas flow and aerosol transmission of a spent fuel surrogate through an engineered microchannel with dimensions representative of an SCC were evaluated experimentally using coupled mass flow and aerosol analyzers. The microchannel was formed by mating two gage blocks with a linearly tapering slot orifice nominally 13 μm (0.005 in.) tall on the upstream side and 25 μm (0.0010 in.) tall on the downstream side. The orifice is 12.7 mm (0.500 in.) wide by 8.89 mm (0.350 in.) long (flow length). Surrogate aerosols of cerium oxide, CeO2, were seeded and mixed with either helium or air inside a pressurized tank. The aerosol characteristics were measured immediately upstream and downstream of the simulated SCC at elevated and ambient pressures, respectively. These data sets are intended to demonstrate a new capability to characterize SCCs under well-controlled boundary conditions. Modeling efforts were also initiated that evaluate the depletion of aerosols in a commercial dry storage canister. These preliminary modeling and ongoing testing efforts are focused on understanding the evolution in both size and quantity of a hypothetical release of aerosolized spent fuel particles from failed fuel to the canister interior and ultimately through an SCC.

More Details

The effects of well damage and completion designs on geo-electrical responses in mature wellbore environments

Geophysics

Beskardes, G.D.; Weiss, Chester J.; Um, Evan; Wilt, Michael; Maclennan, Kris

Well integrity is one of the major concerns in long-term geologic storage sites due to its potential risk for well leakage and groundwater contamination. Evaluating changes in electrical responses due to energized steel-cased wells has the potential to quantify and predict possible wellbore failures, as any kind of breakage or corrosion along highly-conductive well casings will have an impact on the distribution of subsurface electrical potential. However, realistic wellbore-geoelectrical models that can fully capture fine scale details of well completion design and the state of well damage at the field scale require extensive computational e.ort, or can even be intractable to simulate. To overcome this computational burden while still keeping the model realistic, we use the hierarchical finite element method which represents electrical conductivity at each dimensional component (1-D edges, 2-D planes and 3-D cells) of a tetrahedra mesh. This allows well completion designs with real-life geometric scales and well systems with realistic, detailed, progressive corrosion and damage in our models. Here, we present a comparison of possible discretization approaches of a multi-casing completion design in the finite-element model. The e.ects of the surface casing length and the coupling between concentric well casings, as well as the e.ects of the degree and the location of well damage on the electrical responses are also examined. Finally, we analyze real surface electric field data to detect wellbore integrity failure associated with damage.

More Details

Development of a compressive failure model for carbon fiber composites and associated uncertainties

Composites Science and Technology

Camarena, Ernesto C.; Clarke, Ryan J.; Ennis, Brandon L.

An approach to increase the value of carbon fiber for wind turbines blades, and other compressive strength driven designs, is to identify pathways to increase its cost-specific compressive strength. A finite element model has been developed to evaluate the predictiveness of current finite element methods and to lay groundwork for future studies that focus on improving the cost-specific compressive strength. Parametric studies are conducted to understand which uncertainties in the model inputs have the greatest impact on compressive strength predictions. A statistical approach is also presented that enables the micromechanical model, which is deterministic, to efficiently account for statistical variability in the fiber misalignment present in composite materials; especially if the results from the hexagonal and square pack models are averaged. The model was found to agree well with experimental results for a Zoltek PX-35 pultrusion. The sensitivity studies suggest that the fiber packing and the interface shear strength have the greatest impact on compressive strength prediction for the fiber reinforced polymer studied here. Based on the performance of the modeling approach presented in this work, it is deemed sufficient for future work which will seek to identify carbon fiber composites with improved cost-specific compressive strength.

More Details

Evaluation of the Barracuda Software Package for Simulating Bubble Motion in Vibrating Liquid-Filled Containers

McMullen, Ryan M.; Torczynski, J.R.

The commercial software package Barracuda, developed by CPFD Software for simulating particle-laden fluid flows, is evaluated as a means to simulate the motion of bubbles in vibrating liquid-filled containers. Demonstration simulations of bubbles rising due to buoyancy forces in a cylinder filled with silicone oil and angled at 0, 30, 45, and 60 degrees from the vertical were performed by CPFD Software. The results of these simulations are discussed, and the capabilities of Barracuda for simulating bubble motion are assessed. It was determined that at present Barracuda does not meet the needs of the desired application. Further developments that would enable its use for this application are highlighted.

More Details

Residual stress analysis of aluminum nitride piezoelectric micromachined ultrasonic transducers using Raman spectroscopy

Journal of Applied Physics

Esteves, Giovanni E.; Lundh, James S.; Coleman, Kathleen; Song, Yiwen; Griffin, Benjamin A.; Douglas, Erica A.; Edstrand, Adam E.; Badescu, Stefan C.; Leach, Jacob H.; Moody, Baxter; Trolier-Mckinstry, Susan; Choi, Sukwon; Moore, Elizabeth A.

In this study, the Raman biaxial stress coefficients KII and strain-free phonon frequencies ω0 have been determined for the E2 (low), E2 (high), and A1 (LO) phonon modes of aluminum nitride, AlN, using both experimental and theoretical approaches. The E2 (high) mode of AlN is recommended for the residual stress analysis of AlN due to its high sensitivity and the largest signal-to-noise ratio among the studied modes. The E2 (high) Raman biaxial stress coefficient of -3.8 cm-1/GPa and strain-free phonon frequency of 656.68 cm-1 were then applied to perform both macroscopic and microscopic stress mappings. For macroscopic stress evaluation, the spatial variation of residual stress was measured across an AlN-on-Si wafer prepared by sputter deposition. A cross-wafer variation in residual stress of ∼150 MPa was observed regardless of the average stress state of the film. Microscopic stress evaluation was performed on AlN piezoelectric micromachined ultrasonic transducers (pMUTs) with submicrometer spatial resolution. These measurements were used to assess the effect of device fabrication on residual stress distribution in an individual pMUT and the effect of residual stress on the resonance frequency. At ∼20 μm directly outside the outer edge of the pMUT electrode, a large lateral spatial variation in residual stress of ∼100 MPa was measured, highlighting the impact of metallization structures on residual stress in the AlN film.

More Details

Lessons Learned—Lithium Silicide Hydration Fire

Journal of Chemical Health and Safety

Benally, Brynal B.; Juba, Benjamin W.; Schafer, David P.; Pimentel, Adam S.; Kustas, Jessica K.

Alkali metals, such as lithium, sodium, potassium, etc., are highly reactive elements. While researchers generally handle these metals with caution, less caution is taken when these elements have been “reacted”. In this work, a recent incident is examined in which a pair of researchers ignited a lithium silicide alloy sample that was assumed to be fully hydrated to lithium hydroxide and, thereby, no longer water-reactive. However, variations in the original chemical composition of the lithium compounds examined resulted in select mixtures failing to hydrate and react completely to lithium hydroxide in the time frame allowed. This gave rise to residual unreacted, water-sensitive lithium silicide which resulted in a violent exothermic reaction with water and autoignition of the produced hydrogen gas. This Article describes this incident and improvements that can be implemented to prevent similar incidents from occurring.

More Details

Conducted Electromagnetic Pulse Testing of Digital Protective Relay Circuits

2021 Joint IEEE International Symposium on Electromagnetic Compatibility Signal and Power Integrity, and EMC Europe, EMC/SI/PI/EMC Europe 2021

Bowman, Tyler B.; Guttromson, Ross G.; Minteer, Tim; Mooney, Travis; Halligan, Matt

The electric power grid is one of the most critical national infrastructures, and determining the susceptibility of power grid elements to external factors is of significant importance for ensuring grid resilience. Reliable energy is vital to the safety and security of society. One potential threat to the power grid comes in the form of strong electromagnetic field transients arising from high-altitude nuclear weapon detonation. The radiated EM fields from these can affect the operation of electronic components via direct field exposure or from the conducted transients that arise from coupling onto long cables. Vulnerability to these pulses for many electrical components on the grid is unknown. This research focuses on conducted pulse testing of digital protective relays in a power substation and their associated high-voltage circuit breaker circuit and instrumentation transformer circuits. The relays, yard cables, power supplies, and components representing yard equipment were assembled in a manner consistent with installation in a substation to represent the pulse's propagation in the components and wiring. Equipment was tested using pulsed injection into the yard cable. The results showed no equipment damage or undesired operations for insult levels below 180 kV peak open circuit voltage, which is significantly higher than the anticipated coupling to substation yard cables.

More Details

Rechargeable Alkaline Zinc/Copper Oxide Batteries

ACS Applied Energy Materials

Schorr, Noah B.; Arnot, David J.; Bruck, Andrea M.; Duay, Jonathon W.; Kelly, Maria; Habing, Rachel L.; Ricketts, Logan S.; Vigil, Julian A.; Gallaway, Joshua W.; Lambert, Timothy N.

Resurrecting a battery chemistry thought to be only primary, we demonstrate the first example of a rechargeable alkaline zinc/copper oxide battery. With the incorporation of a Bi2O3additive to stabilize the copper oxide-based conversion cathode, Zn/(CuO-Bi2O3) cells are capable of cycling over 100 times at >124 W h/L, with capacities from 674 mA h/g (cycle 1) to 362 mA h/g (cycle 150). The crucial role of Bi2O3in facilitating the electrochemical reversibility of Cu2O, Cu(OH)2, and Cuowas supported by scanning and transmission electrochemical microscopy, cyclic voltammetry, and rotating ring-disc electrode voltammetry and monitoredvia operandoenergy-dispersive X-ray diffraction measurements. Bismuth was identified as serving two roles, decreasing the cell resistance and promoting Cu(I) and Cu(II) reduction. To mitigate the capacity losses of long-term cycling CuO cells, we demonstrate two limited depth of discharge (DOD) strategies. First, a 30% DOD (202 mA h/g) retains 99.9% capacity over 250 cycles. Second, the modification of the CuO cathode by the inclusion of additional Cu metal enables performance at very high areal capacities of ∼40 mA h/cm2and unprecedented energy densities of ∼260 W h/L, with near 100% Coulombic efficiency. This work revitalizes a historically primary battery chemistry and opens opportunity to future works in developing copper-based conversion cathode chemistries for the realization of low-cost, safe, and energy-dense secondary batteries.

More Details

Co-Design of Free-Space Metasurface Optical Neuromorphic Classifiers for High Performance

ACS Photonics

Leonard, Francois L.; Backer, Adam S.; Fuller, Elliot J.; Teeter, Corinne M.; Vineyard, Craig M.

Classification of features in a scene typically requires conversion of the incoming photonic field into the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by directly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength λ, single layer metasurfaces of size 100λ × 100λ with an aperture density λ-2 achieve ∼96% testing accuracy on the MNIST data set, for an optimized distance ∼100λ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.

More Details

A high-voltage, low-temperature molten sodium battery enabled by metal halide catholyte chemistry

Cell Reports Physical Science

Gross, Martha S.; Percival, Stephen P.; Lee, Rose Y.; Peretti, Amanda S.; Spoerke, Erik D.; Small, Leo J.

Despite its promise as a safe, reliable system for grid-scale electrical energy storage, traditional molten sodium (Na) battery deployment remains limited by cost-inflating high-temperature operation. Here, we describe a high-performance sodium iodide-gallium chloride (NaI-GaCl3) molten salt catholyte that enables a dramatic reduction in molten Na battery operating temperature from near 300°C to 110°C. We demonstrate stable, high-performance electrochemical cycling in a high-voltage (3.65 V) Na-NaI battery for >8 months at 110°C. Supporting this demonstration, characterization of the catholyte physical and electrochemical properties identifies critical composition, voltage, and state of charge boundaries associated with this enabling inorganic molten salt electrolyte. Symmetric and full cell testing show that the catholyte salt can support practical current densities in a low-temperature system. Collectively, these studies describe the critical catholyte properties that may lead to the realization of a new class of low-temperature molten Na batteries.

More Details

Effect of surface properties and polymer chain length on polymer adsorption in solution

Journal of Chemical Physics

Lin, Emily Y.; Frischknecht, Amalie F.; Winey, Karen I.; Riggleman, Robert A.

In polymer nanoparticle composites (PNCs) with attractive interactions between nanoparticles (NPs) and polymers, a bound layer of the polymer forms on the NP surface, with significant effects on the macroscopic properties of the PNCs. The adsorption and wetting behaviors of polymer solutions in the presence of a solid surface are critical to the fabrication process of PNCs. In this study, we use both classical density functional theory (cDFT) and molecular dynamics (MD) simulations to study dilute and semi-dilute solutions of short polymer chains near a solid surface. Using cDFT, we calculate the equilibrium properties of polymer solutions near a flat surface while varying the solvent quality, surface-fluid interactions, and the polymer chain lengths to investigate their effects on the polymer adsorption and wetting transitions. Using MD simulations, we simulate polymer solutions near solid surfaces with three different curvatures (a flat surface and NPs with two radii) to study the static conformation of the polymer bound layer near the surface and the dynamic chain adsorption process. We find that the bulk polymer concentration at which the wetting transition in the poor solvent system occurs is not affected by the difference in surface-fluid interactions; however, a threshold value of surface-fluid interaction is needed to observe the wetting transition. We also find that with good solvent, increasing the chain length or the difference in the surface-polymer interaction relative to the surface-solvent interaction increases the surface coverage of polymer segments and independent chains for all surface curvatures. Finally, we demonstrate that the polymer segmental adsorption times are heavily influenced only by the surface-fluid interactions, although polymers desorb more quickly from highly curved surfaces.

More Details

Tuning Epoxy Thermomechanics via Thermal Isomerization: A Route to Negative Coefficient of Thermal Expansion Materials

ACS Macro Letters

Foster, Jeffrey C.; Staiger, Chad S.; Dugger, Jason W.; Redline, Erica M.

Fine control over the thermal expansion and contraction behavior of polymer materials is challenging. Most polymers have large coefficients of thermal expansion (CTEs), which preclude long performance lifetimes of composite materials. Herein, we report the design and synthesis of epoxy thermosets with low CTE values below their Tg and large contraction behavior above Tg by incorporating thermally contractile dibenzocyclooctane (DBCO) motifs within the thermoset network. This atypical thermomechanical behavior was rationalized in terms of a twist-boat to chair conformational equilibrium of the DBCO linkages. We anticipate these findings to be generally useful in the preparation of materials with designed CTE values.

More Details

Temperature-dependent x-ray fluorescent response from thermographic phosphors under x-ray excitation

Applied Physics Letters

Westphal, Eric R.; Brown, Alex D.; Quintana, Enrico C.; Kastengren, Alan L.; Son, Steven F.; Meyer, Terrence R.; Hoffmeister, Kathryn N.

Phosphor thermometry has been successfully applied within several challenging environments. Typically, the thermographic phosphors are excited by an ultraviolet light source, and the temperature-dependent spectral or temporal response is measured. However, this is challenging or impossible in optically thick environments. In addition, emission from other sources (e.g., a flame) may interfere with the optical phosphor emission. A temperature dependent x-ray excitation/emission could alleviate these issues as x-rays could penetrate obscurants with no interference from flame luminosity. In addition, x-ray emission could allow for thermometry within solids while simultaneously x-ray imaging the structural evolution. In this study, select thermographic phosphors were excited via x-ray radiation, and their x-ray emission characteristics were measured at various temperatures. Several of the phosphors showed varying levels of temperature dependence with the strongest sensitivity occurring for YAG:Dy and ZnGa2O4:Mn. This approach opens a path for less intrusive temperature measurements, particularly in optically opaque multiphase and solid phase combustion environments.

More Details

GDSA PFLOTRAN Development (FY2021)

Nole, Michael A.; Leone, Rosemary C.; Park, Heeho D.; Paul, Matthew J.; Laros, James H.; Hammond, Glenn E.; Lichtner, Peter C.

The Spent Fuel & Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2021 advances of the PFLOTRAN Development group of the SFWST Campaign. The mission of this group is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of generic disposal concepts. In FY 2021, development proceeded along three main thrusts: software infrastructure, code performance, and process model advancement. Software infrastructure improvements included implementing an Agile software development framework and making improvements to the QA Test Suite. Code performance improvements included development of advanced linear and nonlinear solvers as well as design of flexible smoothing algorithms for capillary pressure functions. Process modeling advancements included the addition of flexible thermal conductivity function definitions and refinement of multi-continuum reactive transport to support Sandia’s participation in DECOVALEX

More Details

Exploring the Potential of Using Carbonyl Sulfide to Track the Urban Biosphere Signal

Journal of Geophysical Research: Atmospheres

Villalba, Gara; Whelan, Mary; Montzka, Stephen A.; Cameron-Smith, Philip J.; Fischer, Marc; Zumkehr, Andrew; Hilton, Tim; Stinecipher, James; Baker, Ian; Bambha, Ray B.; Lafranchi, Brian W.; Estruch, Carme; Campbell, Elliott

Cities are implementing additional urban green as a means to capture CO2 and become more carbon neutral. However, cities are complex systems where anthropogenic and natural components of the CO2 budget interact with each other, and the ability to measure the efficacy of such measures is still not properly addressed. There is still a high degree of uncertainty in determining the contribution of the vegetation signal, which furthermore confounds the use of CO2 mole fraction measurements for inferring anthropogenic emissions of CO2. Carbonyl sulfide (OCS) is a tracer of photosynthesis which can aid in constraining the biosphere signal. This study explores the potential of using OCS to track the urban biosphere signal. We used the Sulfur Transport and dEposition Model (STEM) to simulate the OCS concentrations and the Carnegie Ames Stanford Approach ecosystem model to simulate global CO2 fluxes over the Bay Area of San Francisco during March 2015. Two observation towers provided measurements of OCS and CO2: The Sutro tower in San Francisco (upwind from the area of study providing background observations), and a tower located at Sandia National Laboratories in Livermore (downwind of the highly urbanized San Francisco region). Our results show that the STEM model works better under stable marine influence, and that the boundary layer height and entrainment are driving the diurnal changes in OCS and CO2 at the downwind Sandia site. However, the STEM model needs to better represent the transport and boundary layer variability, and improved estimates of gross primary productivity for characterizing the urban biosphere signal are needed.

More Details

Al0.7Ga0.3N MESFET With All-Refractory Metal Process for High Temperature Operation

IEEE Transactions on Electron Devices

Potts, Alexander M.; Bajaj, Sanyam; Daughton, David R.; Allerman, A.A.; Armstrong, Andrew A.; Razzak, Towhidur; Sohel, Shahadat H.; Rajan, Siddharth

In this work, ultrawide bandgap Al0.7Ga0.3N MESFETs with refractory Tungsten Schottky and Ohmic contacts are studied in 300–675 K environments. Variable-temperature dc electrical transport reveals large ON-state drain current densities for an AlGaN device: 209 mA/mm at 300 K and 156 mA/mm at 675 K in the ON-state (25% reduction). Drain and gate currents are only weakly temperature-dependent, suggesting potential for engineering temperature invariant operation. The ON-/ OFF-ratio is limited by OFF-state leakage through the gate, which is attributed to damage from sputter deposition. Future work using refractory metals with larger work functions that are deposited by electron beam deposition is proposed.

More Details

Bio-inspired incorporation of phenylalanine enhances ionic selectivity in layer-by-layer deposited polyelectrolyte films

Soft Matter

Percival, Stephen P.; Russo, Sara R.; Priest, Chad; Hill, Ryan C.; Ohlhausen, J.A.; Small, Leo J.; Rempe, Susan R.; Spoerke, Erik D.

The addition of a common amino acid, phenylalanine, to a Layer-by-Layer (LbL) deposited polyelectrolyte (PE) film on a nanoporous membrane can increase its ionic selectivity over a PE film without the added amino acid. The addition of phenylalanine is inspired by detailed knowledge of the structure of the channelrhodopsins family of protein ion channels, where phenylalanine plays an instrumental role in facilitating sodium ion transport. The normally deposited and crosslinked PE films increase the cationic selectivity of a support membrane in a controllable manner where higher selectivity is achieved with thicker PE coatings, which in turn also increases the ionic resistance of the membrane. The increased ionic selectivity is desired while the increased resistance is not. We show that through incorporation of phenylalanine during the LbL deposition process, in solutions of NaCl with concentrations ranging from 0.1 to 100 mM, the ionic selectivity can be increased independently of the membrane resistance. Specifically, the addition is shown to increase the cationic transference of the PE films from 81.4% to 86.4%, an increase on par with PE films that are nearly triple the thickness while exhibiting much lower resistance compared to the thicker coatings, where the phenylalanine incorporated PE films display an area specific resistance of 1.81 Ω cm2in 100 mM NaCl while much thicker PE membranes show a higher resistance of 2.75 Ω cm2in the same 100 mM NaCl solution.

More Details
Results 9501–9600 of 96,771
Results 9501–9600 of 96,771