Publications

10 Results

Search results

Jump to search filters

High Temperature Component and Data Link Evaluation

Wright, Andrew A.; Cashion, Avery T.; Tiong, Francis

More Details

High Temperature High Speed Downhole Data Transfer (Data Link)

Transactions - Geothermal Resources Council

Wright, Andrew A.; Cashion, Avery T.; Tiong, Francis

More Details

Downhole Smart Collar Technology for Wireless Real-Time Fluid Monitoring

Transactions - Geothermal Resources Council

Wright, Andrew A.; Cashion, Avery T.; Cochrane, Alfred; Raymond, David W.; Laros, James H.; Ahmadian, Mohsen; Scherer, Axel; Mecham, Jeff

Carbon sequestration is a growing field that requires subsurface monitoring for potential leakage of the sequestered fluids through the casing annulus. Sandia National Laboratories (SNL) is developing a smart collar system for downhole fluid monitoring during carbon sequestration. This technology is part of a collaboration between SNL, University of Texas at Austin (UT Austin) (project lead), California Institute of Technology (Caltech), and Research Triangle Institute (RTI) to obtain real-time monitoring of the movement of fluids in the subsurface through direct formation measurements. Caltech and RTI are developing millimeter-scale radio frequency identification (RFID) sensors that can sense carbon dioxide, pH, and methane. These sensors will be impervious to cement, and as such, can be mixed with cement and poured into the casing annulus. The sensors are powered and communicate via standard RFID protocol at 902-928 MHz. SNL is developing a smart collar system that wirelessly gathers RFID sensor data from the sensors embedded in the cement annulus and relays that data to the surface via a wired pipe that utilizes inductive coupling at the collar to transfer data through each segment of pipe. This system cannot transfer a direct current signal to power the smart collar, and therefore, both power and communications will be implemented using alternating current and electromagnetic signals at different frequencies. The complete system will be evaluated at UT Austin's Devine Test Site, which is a highly characterized and hydraulically fractured site. This is the second year of the three-year effort, and a review of SNL's progress on the design and implementation of the smart collar system is provided.

More Details

Development of a High Temperature, High Pressure Logging Tool for Downhole pH Measurements

Transactions - Geothermal Resources Council

Henfling, Joe; Von Hirtz, Paul; Broaddus, Mark; Kunzman, Russ; Galisanao, Edward; Wright, Andrew A.; Hess, Ryan F.; Cashion, Avery T.

Sandia National Laboratories has developed technology enabling novel downhole electrochemical assessment in extreme downhole environments. High-temperature high-pressure (HTHP) electrodes selectively sensitive to hydrogen (H+), chloride (Cl-), iodide (I-) and overall ionic strength (Reference Electrode+-) have been demonstrated in representative geothermal environments (225°C and 103 bar in surrogate geothermal brine). This 2-year program is a collaboration effort between Sandia and Thermochem, Inc. with the goal of taking the prototype sensors and developing them into a commercial product that is operable up to 300°C and 345 bar. The Sandia-developed prototype HTHP chemical sensor package creates a capability that has never been possible to date. This technology is desired by the geothermal industry to fill a gap in available downhole real-time measurements. Only limited sensors are available that operate at the extreme temperatures and pressures found in geothermal wells. For the purpose of this paper, high temperature is defined as temperatures exceeding 200°C and high pressure is defined as pressures exceeding 35 bar. Chemical sensors exceeding these parameters and sized appropriately for downhole applications do not exist. The current Thermochem two-phase downhole sampling tool (rated to 350 °C) will be re-configured to accept the sensors. A downhole tool with an integrated pH real-time sensor capable of operation at 300°C and 345 bar does not exist and as such, the developed technology will provide the geothermal industry with data that would otherwise not be possible such as vertical in-situ pH-profiling of geothermal wells. The pH measurement was chosen as the first chemical sensor focus since it is one of the fundamental measurements required to understand downhole chemistry, scaling and corrosion processes.

More Details

Evaluation of High Temperature Microcontrollers and Memory Chips for Geothermal Applications

Transactions - Geothermal Resources Council

Wright, Andrew A.; Cashion, Avery T.

The latest high temperature (HT) microcontrollers and memory technology have been investigated for the purpose of enhancing downhole instrumentation capabilities at temperatures above 210°C. As part of the effort, five microcontrollers (Honeywell HT83C51, RelChip RC10001, Texas Instruments SM470R1B1M-HT, SM320F2812-HT, SM320F28335-HT) and one memory chip (RelChip RC2110836) have been evaluated to its rated temperature for a period of one month to determine life expectancy and performance. Pulse rate of the integrated circuit and internal memory scan were performed during testing by remotely located axillary components. This paper will describe challenges encountered in the operation and HT testing of these components. Long-term HT tests results show the variation in power consumption and packaging degradation. The work described in this paper improves downhole instrumentation by enabling greater sensor counts and improving data accuracy and transfer rates at temperatures between 210°C and 300°C.

More Details

High Temperature High Speed Downhole Data Transfer (Data Link)

Transactions - Geothermal Resources Council

Wright, Andrew A.; Cashion, Avery T.; Tiong, Francis

More Details
10 Results
10 Results