Evaluation of high temperature (HT) microcontrollers for Geothermal applications. The goal was to evaluate the limited microcontrollers capable of operating above 200 degrees Celsius. The knowledge obtained from this research has been documented for contributing to future development of high temperature geothermal tools. Along with this research, a HT data link for communications was developed and evaluated, also for HT geothermal tools.
In high temperature (HT) environments often encountered in geothermal wells, data rate transfers for downhole instrumentation are relatively limited due to transmission line bandwidth and insertion loss and the processing speed of HT microcontrollers. In previous research, Sandia National Laboratory Geothermal Department obtained 3.8 Mbps data rates over 1524 m (5000 ft) for single conductor wireline cable with less than a 1x10-8 bit error rate utilizing low temperature NITM hardware (formerly National InstrumentsTM). Our protocol technique was a combination of orthogonal frequency-division multiplexing and quadrature amplitude modulation across the bandwidth of the single conductor wireline. This showed it is possible to obtain high data rates in low bandwidth wirelines. This paper focuses on commercial HT microcontrollers (µC), rather than low temperature NITM modules, to enable high-speed communication in an HT environment. As part of this effort, four devices were evaluated, and an optimal device (SM320F28335-HT) was selected for its high clock rates, floating-point unit, and on-board analog-to-digital converter. A printed circuit board was assembled with the HT µC, an HT resistor digital-to-analog converter, and an HT line driver. The board was tested at the microcontroller's rated maximum temperature (210°C) for a week while transmitting through a 1524 m (5000 ft) wireline. A final test was conducted to the point of failure at elevated temperatures. This paper will discuss communication methods, achieved data rates, and hardware selection. This effort contributes to the enhancement of HT instrumentation by enabling greater sensor counts and improving data accuracy and transfer rates.
Carbon sequestration is a growing field that requires subsurface monitoring for potential leakage of the sequestered fluids through the casing annulus. Sandia National Laboratories (SNL) is developing a smart collar system for downhole fluid monitoring during carbon sequestration. This technology is part of a collaboration between SNL, University of Texas at Austin (UT Austin) (project lead), California Institute of Technology (Caltech), and Research Triangle Institute (RTI) to obtain real-time monitoring of the movement of fluids in the subsurface through direct formation measurements. Caltech and RTI are developing millimeter-scale radio frequency identification (RFID) sensors that can sense carbon dioxide, pH, and methane. These sensors will be impervious to cement, and as such, can be mixed with cement and poured into the casing annulus. The sensors are powered and communicate via standard RFID protocol at 902-928 MHz. SNL is developing a smart collar system that wirelessly gathers RFID sensor data from the sensors embedded in the cement annulus and relays that data to the surface via a wired pipe that utilizes inductive coupling at the collar to transfer data through each segment of pipe. This system cannot transfer a direct current signal to power the smart collar, and therefore, both power and communications will be implemented using alternating current and electromagnetic signals at different frequencies. The complete system will be evaluated at UT Austin's Devine Test Site, which is a highly characterized and hydraulically fractured site. This is the second year of the three-year effort, and a review of SNL's progress on the design and implementation of the smart collar system is provided.
Sandia National Laboratories has developed technology enabling novel downhole electrochemical assessment in extreme downhole environments. High-temperature high-pressure (HTHP) electrodes selectively sensitive to hydrogen (H+), chloride (Cl-), iodide (I-) and overall ionic strength (Reference Electrode+-) have been demonstrated in representative geothermal environments (225°C and 103 bar in surrogate geothermal brine). This 2-year program is a collaboration effort between Sandia and Thermochem, Inc. with the goal of taking the prototype sensors and developing them into a commercial product that is operable up to 300°C and 345 bar. The Sandia-developed prototype HTHP chemical sensor package creates a capability that has never been possible to date. This technology is desired by the geothermal industry to fill a gap in available downhole real-time measurements. Only limited sensors are available that operate at the extreme temperatures and pressures found in geothermal wells. For the purpose of this paper, high temperature is defined as temperatures exceeding 200°C and high pressure is defined as pressures exceeding 35 bar. Chemical sensors exceeding these parameters and sized appropriately for downhole applications do not exist. The current Thermochem two-phase downhole sampling tool (rated to 350 °C) will be re-configured to accept the sensors. A downhole tool with an integrated pH real-time sensor capable of operation at 300°C and 345 bar does not exist and as such, the developed technology will provide the geothermal industry with data that would otherwise not be possible such as vertical in-situ pH-profiling of geothermal wells. The pH measurement was chosen as the first chemical sensor focus since it is one of the fundamental measurements required to understand downhole chemistry, scaling and corrosion processes.
The latest high temperature (HT) microcontrollers and memory technology have been investigated for the purpose of enhancing downhole instrumentation capabilities at temperatures above 210°C. As part of the effort, five microcontrollers (Honeywell HT83C51, RelChip RC10001, Texas Instruments SM470R1B1M-HT, SM320F2812-HT, SM320F28335-HT) and one memory chip (RelChip RC2110836) have been evaluated to its rated temperature for a period of one month to determine life expectancy and performance. Pulse rate of the integrated circuit and internal memory scan were performed during testing by remotely located axillary components. This paper will describe challenges encountered in the operation and HT testing of these components. Long-term HT tests results show the variation in power consumption and packaging degradation. The work described in this paper improves downhole instrumentation by enabling greater sensor counts and improving data accuracy and transfer rates at temperatures between 210°C and 300°C.
In high temperature (HT) environments often encountered in geothermal wells, data rate transfers for downhole instrumentation are relatively limited due to transmission line bandwidth and insertion loss and the processing speed of HT microcontrollers. In previous research, Sandia National Laboratory Geothermal Department obtained 3.8 Mbps data rates over 1524 m (5000 ft) for single conductor wireline cable with less than a 1x10-8 bit error rate utilizing low temperature NITM hardware (formerly National InstrumentsTM). Our protocol technique was a combination of orthogonal frequency-division multiplexing and quadrature amplitude modulation across the bandwidth of the single conductor wireline. This showed it is possible to obtain high data rates in low bandwidth wirelines. This paper focuses on commercial HT microcontrollers (µC), rather than low temperature NITM modules, to enable high-speed communication in an HT environment. As part of this effort, four devices were evaluated, and an optimal device (SM320F28335-HT) was selected for its high clock rates, floating-point unit, and on-board analog-to-digital converter. A printed circuit board was assembled with the HT µC, an HT resistor digital-to-analog converter, and an HT line driver. The board was tested at the microcontroller's rated maximum temperature (210°C) for a week while transmitting through a 1524 m (5000 ft) wireline. A final test was conducted to the point of failure at elevated temperatures. This paper will discuss communication methods, achieved data rates, and hardware selection. This effort contributes to the enhancement of HT instrumentation by enabling greater sensor counts and improving data accuracy and transfer rates.