Publications

6 Results

Search results

Jump to search filters

Compressive strength improvements from noncircular carbon fibers: A numerical study

Composites Science and Technology

Camarena, Ernesto C.; Clarke, Ryan J.; Ennis, Brandon L.

The benefits of high-performance unidirectional carbon fiber composites are limited in many cost-driven industries due to the high cost relative to alternative reinforcement fibers. Low-cost carbon fibers have been previously proposed, but the longitudinal compressive strength continues to be a limiting factor or studies are based on simplifications that warrant further analysis. A micromechanical model is used to (1) determine if the longitudinal compressive strength of composites can be improved with noncircular carbon fiber shapes and (2) characterize why some shapes are stronger than others in compression. In comparison to circular fibers, the results suggest that the strength can be increased by 10%–13% by using a specific six-lobe fiber shape and by 6%–9% for a three-lobe fiber shape. A slight increase is predicted in the compressive strength of the study two-lobe fiber but has the highest uncertainty and sensitivity to fiber orientation and misalignment direction. The underlying mechanism governing the compressive failure of the composites was linked to the unique stress fields created by the lobes, particularly the pressure stress in the matrix. This work provides mechanics-based evidence of strength improvements from noncircular fiber shapes and insight on how matrix yielding is altered with alternative fiber shapes.

More Details

Land-based wind turbines with flexible rail-transportable blades - Part 2: 3D finite element design optimization of the rotor blades

Wind Energy Science

Camarena, Ernesto C.; Anderson, Evan M.; Paquette, Joshua P.; Bortolotti, Pietro; Feil, Roland; Johnson, Nick

Increasing growth in land-based wind turbine blades to enable higher machine capacities and capacity factors is creating challenges in design, manufacturing, logistics, and operation. Enabling further blade growth will require technology innovation. An emerging solution to overcome logistics constraints is to segment the blades spanwise and chordwise, which is effective, but the additional field-assembled joints result in added mass and loads, as well as increased reliability concerns in operation. An alternative to this methodology is to design slender flexible blades that can be shipped on rail lines by flexing during transport. However, the increased flexibility is challenging to accommodate with a typical glass-fiber, upwind design. In a two-part paper series, several design options are evaluated to enable slender flexible blades: downwind machines, optimized carbon fiber, and active aerodynamic controls. Part 1 presents the system-level optimization of the rotor variants as compared to conventional and segmented baselines, with a low-fidelity representation of the blades. The present work, Part 2, supplements the system-level optimization in Part 1 with high-fidelity blade structural optimization to ensure that the designs are at feasible optima with respect to material strength and fatigue limits, as well as global stability and structural dynamics constraints. To accommodate the requirements of the design process, a new version of the Numerical Manufacturing And Design (NuMAD) code has been developed and released. The code now supports laminate-level blade optimization and an interface to the International Energy Agency Wind Task 37 blade ontology. Transporting long, flexible blades via controlled flapwise bending is found to be a viable approach for blades of up to 100m. The results confirm that blade mass can be substantially reduced by going either to a downwind design or to a highly coned and tilted upwind design. A discussion of active and inactive constraints consisting of material rupture, fatigue damage, buckling, deflection, and resonant frequencies is presented. An analysis of driving load cases revealed that the downwind designs are dominated by loads from sudden, abrupt events like gusts rather than fatigue. Finally, an analysis of carbon fiber spar caps for downwind machines finds that, compared to typical carbon fibers, the use of a new heavy-tow carbon fiber in the spar caps is found to yield between 9% and 13% cost savings. Copyright:

More Details

Big Adaptive Rotor Phase I Final Report

Johnson, Nick; Paquette, Joshua P.; Bortolotti, Pietro; Bolinger, Mark; Camarena, Ernesto C.; Anderson, Evan M.; Ennis, Brandon L.

The Big Adaptive Rotor (BAR) project was initiated by the U.S. Department of Energy (DOE) in 2018 with the goal of identifying novel technologies that can enable large (>100 meter [m]) blades for low-specific-power wind turbines. Five distinct tasks were completed to achieve this goal: 1. Assessed the trends, impacts, and value of low-specific-power wind turbines; 2. Developed a wind turbine blade cost-reduction road map study; 3. Completed research-and-development opportunity screening; 4. Performed detailed design and analysis; and, 5. Assessed low-cost carbon fiber. These tasks were completed by the national laboratory team consisting of Sandia National Laboratories (Sandia), the National Renewable Energy Laboratory (NREL), and Lawrence Berkeley National Laboratory.

More Details

Development of a compressive failure model for carbon fiber composites and associated uncertainties

Composites Science and Technology

Camarena, Ernesto C.; Clarke, Ryan J.; Ennis, Brandon L.

An approach to increase the value of carbon fiber for wind turbines blades, and other compressive strength driven designs, is to identify pathways to increase its cost-specific compressive strength. A finite element model has been developed to evaluate the predictiveness of current finite element methods and to lay groundwork for future studies that focus on improving the cost-specific compressive strength. Parametric studies are conducted to understand which uncertainties in the model inputs have the greatest impact on compressive strength predictions. A statistical approach is also presented that enables the micromechanical model, which is deterministic, to efficiently account for statistical variability in the fiber misalignment present in composite materials; especially if the results from the hexagonal and square pack models are averaged. The model was found to agree well with experimental results for a Zoltek PX-35 pultrusion. The sensitivity studies suggest that the fiber packing and the interface shear strength have the greatest impact on compressive strength prediction for the fiber reinforced polymer studied here. Based on the performance of the modeling approach presented in this work, it is deemed sufficient for future work which will seek to identify carbon fiber composites with improved cost-specific compressive strength.

More Details
6 Results
6 Results