The Waste Isolation Pilot Plant (WIPP) facility is a U.S. Department of Energy (DOE) operating repository 654 m below the surface in a thick salt formation in southeastern New Mexico. The DOE disposes transuranic (TRU) waste produced from atomic energy defense activities at the WIPP facility. A portion of the waste shipped to the WIPP facility contains TRU radionuclides co-mingled with polychlorinated biphenyls (PCBs), which fall under U.S. Environmental Protection Agency (EPA) regulations implementing the Toxic Substances Control Act (TSCA). This report documents the risks of PCBs co-mingled with TRU waste (hereafter designated as PCB/TRU waste) designated for disposal at the WIPP facility. This analysis is input to the National Environmental Policy Act (NEPA) assessment by the DOE Carlsbad Field Office (CBFO) for the proposed increase of the WIPP facility disposal area to include additional waste panels (but not to increase the legislated WIPP volume). This analysis is not a compliance calculation to support a certification renewal nor does it support a planned change request (PCR) or planned change notice (PCN) to be submitted to the EPA.
The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia for focused collaborative research on Department of Energy (DOE) computer and computational science problems. The institute provides an opportunity for university researchers to learn about problems in computer and computational science at DOE laboratories. Participants conduct leading-edge research, interact with scientists and engineers at the laboratories, and help transfer results of their research to programs at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization, adaptivity and mesh refinement, graph-based, discrete, and combinatorial algorithms, uncertainty estimation, mesh generation, dynamic load-balancing, virus and other malicious-code defense, visualization, scalable cluster computers, data-intensive computing, environments for scalable computing, parallel input/output, advanced architectures, and theoretical computer science. The CSRI Summer Program is organized by CSRI and typically includes the organization of a weekly seminar series and the publication of a summer proceedings. In 2020, the CSRI summer program was executed completely virtually; all student interns worked from home, due to the COVID-19 pandemic.
Ryder, Kaitlyn L.; Ryder, Landen D.; Sternberg, Andrew L.; Kozub, John A.; Zhang, En X.; Lalumondiere, Stephen D.; Monahan, Daniele M.; Bonsall, Jeremey P.; Khachatrian, Ani; Buchner, Stephen P.; Mcmorrow, Dale; Hales, Joel M.; Zhao, Yuanfu; Wang, Liang; Wang, Chuanmin; Weller, Robert A.; Schrimpf, Ronald D.; Weiss, Sharon M.; Reed, Robert
Ryder, Landen D.; Ryder, Kaitlyn L.; Sternberg, Andrew L.; Kozub, John A.; Zhang, En X.; Linten, Dimitri; Croes, Kristof; Weller, Robert A.; Schrimpf, Ronald D.; Weiss, Sharon M.; Reed, Robert
This progress report describes work performed during FY20 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY20 further defined our understanding of the potential chemical and physical environment present on canister surfaces, evaluated the relationship between the environment and the resultant corrosion that occurs, and initiated crack growth rate testing under relevant environmental conditions. In FY20, work to define dry storage canister surface environments included several tasks. First, collection of dust deposition specimens from independent spent fuel storage installation (ISFSI) site locations helped to establish a more complete understanding of the potential chemical environment formed on the canister. Second, the predicted evolution of canister surface relative humidity RH) values was estimated using ISFSI site weather data and the horizontal canister thermal model used by the SNL probabilistic SCC model. These calculations determined that for typical ISFSI weather conditions, seasalt deliquescence to produce MgCl2-rich brines could occur in less than 20 years at the coolest locations on the canister surface, and, even after nearly 300 years, conditions for NaCl deliquescence (75% RH) are not reached. This work illustrates the importance of understanding the stability of MgCl2-rich brines on the heated canister surface, and the potential impact of brine composition on corrosion processes, including pitting and stress corrosion cracking. In an additional study, the description of the canister surface environment was refined in order to define more realistic corrosion testing environments including diurnal cycles, soluble salt chemistries, and inert mineral particles. The potential impacts of these phenomena on canister corrosion are being evaluated experimentally. Finally, work over the past few years to evaluate the stability of magnesium chloride brines continued in FY20. MgCl2 degassing experiments were carried out, confirming that MgCl2 brines slowly degas HCl on heated surfaces, converting to less deliquescent magnesium hydroxychloride phases and potentially leading to brine dryout.
This report describes the creation process and final content of a spectral irradiance dataset for Albuquerque NM. The spectral irradiance measurements were made using a dual-axis tracker; therefore, they represent global normal irradiance. The dataset combines spectroradiometer and weather measurements from a two-year period into a continuous calendar year. The data files are accompanied by extensive metadata as well as example calculations and graphs to demonstrate the potential uses of this database.
This report summarizes the work performed under the project "Linear Programming in Strongly Polynomial Time." Linear programming (LP) is a classic combinatorial optimization problem heavily used directly and as an enabling subroutine in integer programming (IP). Specifically IP is the same as LP except that some solution variables must take integer values (e.g. to represent yes/no decisions). Together LP and IP have many applications in resource allocation including general logistics, and infrastructure design and vulnerability analysis. The project was motivated by the PI's recent success developing methods to efficiently sample Voronoi vertices (essentially finding nearest neighbors in high-dimensional point sets) in arbitrary dimension. His method seems applicable to exploring the high-dimensional convex feasible space of an LP problem. Although the project did not provably find a strongly-polynomial algorithm, it explored multiple algorithm classes. The new medial simplex algorithms may still lead to solvers with improved provable complexity. We describe medial simplex algorithms and some relevant structural/complexity results. We also designed a novel parallel LP algorithm based on our geometric insights and implemented it in the Spoke-LP code. A major part of the computational step is many independent vector dot products. Our parallel algorithm distributes the problem constraints across processors. Current commercial and high-quality free LP solvers require all problem details to fit onto a single processor or multicore. Our new algorithm might enable the solution of problems too large for any current LP solvers. We describe our new algorithm, give preliminary proof-of-concept experiments, and describe a new generator for arbitrarily large LP instances.
Proceedings of ExaMPI 2020: Exascale MPI Workshop, Held in conjunction with SC 2020: The International Conference for High Performance Computing, Networking, Storage and Analysis
Achieving fault tolerance is one of the significant challenges of exascale computing due to projected increases in soft/transient failures. While past work on software-based resilience techniques typically focused on traditional bulk-synchronous parallel programming models, we believe that Asynchronous Many-Task (AMT) programming models are better suited to enabling resiliency since they provide explicit abstractions of data and tasks which contribute to increased asynchrony and latency tolerance. In this paper, we extend our past work on enabling application-level resilience in single node AMT programs by integrating the capability to perform asynchronous MPI communication, thereby enabling resiliency across multiple nodes. We also enable resilience against fail-stop errors where our runtime will manage all re-execution of tasks and communication without user intervention. Our results show that we are able to add communication operations to resilient programs with low overhead, by offloading communication to dedicated communication workers and also recover from fail-stop errors transparently, thereby enhancing productivity.
While some engineering fields have benefited from systematic design optimization studies, wave energy converters have yet to successfully incorporate such analyses into practical engineering workflows. The current iterative approach to wave energy converter design leads to sub-optimal solutions. This short paper presents an open-source MATLAB toolbox for performing design optimization studies on wave energy converters where power take-off behavior and realistic constraints can be easily included. This tool incorporates an adaptable control co-design approach, in that a constrained optimal controller is used to simulate device dynamics and populate an arbitrary objective function of the user’s choosing. A brief explanation of the tool’s structure and underlying theory is presented. To demonstrate the capabilities of the tool, verify its functionality, and begin to explore some basic wave energy converter design relationships, three conceptual case studies are presented. In particular, the importance of considering (and constraining) the magnitudes of device motion and forces in design optimization is shown.
Nuclear power plants must be, by design and construction, robust structures and difficult to penetrate. Limiting access with difficult-to-penetrate physical barriers is going to be key for staffing reduction. Ideally, for security, the reactors would be sited underground, beneath a massive solid block, too thick to be penetrated by tools or explosives with all communications and power transfer lines also underground and fortified. Having the minimal possible number of access points and methods to completely block access from these points if a threat is detected will greatly help us justify staffing reduction.
The 1 page briefing on the dynamic materials campaigns in FY20 at the Omega Laser Facility is provided. This was published in the LLE Review, Volume 157.
The Energetic Neutrons campaign led by Sandia National Laboratories (SNL) had a successful year testing electronic devices and printed circuit boards (PCBs) under 14 MeV neutron irradiation at OMEGA. During FY20 the Energetic Neutrons campaign increased the number and complexity of experiments, continued collaborations with external organizations, and generated knowledge that supports SNL’s National Security mission. In FY20 the Energetic Neutrons campaign was executed by an early career team led by a new PI. The SNL team members were trained to take over new responsibilities during the shot day to increase the number and complexity of experiments in the campaigns. Also, in FY20 for the first time the Energetic Neutrons campaign had a graduate student contributing with pre and post-irradiation characterizations at SNL of the semiconductor devices irradiated at OMEGA. In FY20 SNL collaborated with the Air Force Nuclear Weapons Center (AFNWC) and supported experiments related to radiation effects in semiconductor devices. SNL also gave the opportunity to ride along to Los Alamos National Laboratory and multiple scientists from MIT and LLE. SNL continued using the last two generations of the Neutron Effects Diagnostics (NEDs) to field active and passive experiments but also redesigned the latest generation of the NEDs to accommodate larger components and improve the vacuum sealing as shown in figure 1a. The redesigned NEDs allowed SNL to perform active tests of a high voltage (HV) PCB for the first time at OMEGA; where signals before, during and after the irradiation were recorded. The HV PCB installed in one of the SNL NEDs is shown in figure 1b where a 3D-printed nosecone was used to check for mechanical and electrical interference. Passive irradiations of multiple components were followed up with leakage current, gain measurements and radiation-induced defect characterization.