Publications

6 Results

Search results

Jump to search filters

High-Level Considerations for Access and Access Controls by Design

Bland, Jesse J.; Evans, Alan S.; Goolsby, Tommy D.; Horowitz, Steven M.; Monthan, Chad W.; Osborn, Douglas M.; Rivers, Joe; Rodgers, Thomas W.; White, Jake; Williams, Adam D.

The design and construction of a nuclear power plant must include robust structures and a security boundary that is difficult to penetrate. For security considerations, the reactors would ideally be sited underground, beneath a massive solid block, which would be too thick to be penetrated by tools or explosives. Additionally, all communications and power transfer lines would also be located underground and would be fortified against any possible design basis threats. Limiting access with difficult-to-penetrate physical barriers is a key aspect for determining response and staffing requirements. Considerations considered in a graded approach to physical protection are described.

More Details

High-Level Considerations for Access and Access Controls by Design

Bland, Jesse J.; Evans, Alan S.; Goolsby, Tommy D.; Horowitz, Steven M.; Monthan, Chad W.; Osborn, Douglas M.; Rivers, Joe; Rodgers, Thomas W.; White, Jake; Williams, Adam D.

Nuclear power plants must be, by design and construction, robust structures and difficult to penetrate. Limiting access with difficult-to-penetrate physical barriers is going to be key for staffing reduction. Ideally, for security, the reactors would be sited underground, beneath a massive solid block, too thick to be penetrated by tools or explosives with all communications and power transfer lines also underground and fortified. Having the minimal possible number of access points and methods to completely block access from these points if a threat is detected will greatly help us justify staffing reduction.

More Details

High-Level Considerations for Access and Access Controls by Design

Bland, Jesse J.; Evans, Alan S.; Goolsby, Tommy D.; Horowitz, Steven M.; Monthan, Chad W.; Osborn, Douglas M.; Rivers, Joe; Rodgers, Thomas W.; White, Jake; Williams, Adam D.

Nuclear power plants must be, by design and construction, robust structures and difficult to penetrate. Ideally, for security, the reactors would be sited underground, beneath a massive solid block, too thick to be penetrated by tools or explosives with all communications and power transfer lines also underground and fortified. Limiting access with difficult-to-penetrate physical barriers is going to be key for determining response and staffing requirements.

More Details

Materials Applications for Non-Lethal: Aqueous Foams

Scott, Steven H.; Goolsby, Tommy D.

High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.

More Details

Sticky foam technology for less-than-lethal force situations

Goolsby, Tommy D.

Sticky foam is an extremely tacky, tenacious material used to entangle and impair an individual. It was developed at Sandia National Laboratories (SNL) in the late 1970`s for usage in nuclear safeguards and security applications. In late 1992, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of sticky foam for law enforcement usage. The objectives of the project were to develop a dispenser capable of firing sticky foam, to conduct an extensive toxicology review of sticky foam (formulation SF-283), to test the developed dispenser and sticky foam effectiveness on SNL volunteers acting out prison and law enforcement scenarios, and to have the dispenser and sticky foam further evaluated by correctional representatives. This paper discusses the results of the project.

More Details
6 Results
6 Results