The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.
Balancing fairness, user performance, and system performance is a critical concern when developing and installing parallel schedulers. Sandia uses a customized scheduler to manage many of their parallel machines. A primary function of the scheduler is to ensure that the machines have good utilization and that users are treated in a 'fair' manner. A separate compute process allocator (CPA) ensures that the jobs on the machines are not too fragmented in order to maximize throughput. Until recently, there has been no established technique to measure the fairness of parallel job schedulers. This paper introduces a 'hybrid' fairness metric that is similar to recently proposed metrics. The metric uses the Sandia version of a 'fairshare' queuing priority as the basis for fairness. The hybrid fairness metric is used to evaluate a Sandia workload. Using these results, multiple scheduling strategies are introduced to improve performance while satisfying user and system performance constraints.
This report focuses on our recent advances in the fabrication and processing of barium strontium titanate (BST) thin films by chemical solution deposition for next generation functional integrated capacitors. Projected trends for capacitors include increasing capacitance density, decreasing operating voltages, decreasing dielectric thickness and decreased process cost. Key to all these trends is the strong correlation of film phase evolution and resulting microstructure, it becomes possible to tailor the microstructure for specific applications. This interplay will be discussed in relation to the resulting temperature dependent dielectric response of the BST films.
Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.
This paper demonstrates that the conditions for the existence of a dissipation-induced heteroclinic orbit between the inverted and noninverted states of a tippe top are determined by a complex version of the equations for a simple harmonic oscillator: the modified Maxwell-Bloch equations. A standard linear analysis reveals that the modified Maxwell-Bloch equations describe the spectral instability of the noninverted state and Lyapunov stability of the inverted state. Standard nonlinear analysis based on the energy momentum method gives necessary and sufficient conditions for the existence of a dissipation-induced connecting orbit between these relative equilibria.
The formation of 10-nm ZnO nanopyramids using a simple synthetic route has been isolated from the reaction of Zn(OAc)2·2H2O in 1,4-butanediol followed by ripening at 90°C. This was accomplished by establishing control over the Ostwald ripening process through the use of a carboxylic acid specific adsorbate. Using a variety of analytical methods, it is proposed that the carboxylate groups in the acetate precursor stabilize the {101} habit planes, creating septahedral shapes or nanopyramids. Particle assembly into crystallographically oriented dimers was observed with high specificity, and the association mechanism is suggested to relate to the crystal polarity and the variation in specific adsorption of the carboxylic acid to the surface facets. These materials are a candidate for biological labeling applications in living cells.
Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations show that R141b hydrate is stable at temperatures up to 265K, while the isomer hydrate is only stable up to 150K. Despite hydrogen bonding between guest and host, R141b molecules rotated freely within the water cage. The Raman spectrum of R141b in both the pure and hydrate phases was also compared with vibrational analysis from both computational methods. In particular, the frequency of the C-Cl stretch mode (585 cm{sup -1}) undergoes a shift to higher frequency in the hydrate phase. Raman spectra also indicate that this peak undergoes splitting and intensity variation as the temperature is decreased from 4 C to -4 C.
The shape control of thin, flexible structures has been studied primarily for edge-supported thin-plates. For applications such as electromagnetic wave reflectors, corner-supported configurations may prove more applicable since they allow for greater flexibility and larger achievable deflections when compared to edge-supported geometries under similar actuation conditions. Models of such structures provide insight for effective, realizable designs, enable design optimization, and provide a means of active shape control. Models for small deformations of corner-supported, thin laminates actuated by integrated piezoelectric actuators have been developed. However, membrane deflections expected for nominal actuation exceed those stipulated by linear, small deflection theories. In addition, large deflection models have been developed for membranes; however these models are not formulated for shape control. This paper extends a previously-developed linear model for a corner-supported thin, rectangular laminate to a more general large deflection model for a clamped-corner laminate composed of moment actuators and an array of actuating electrodes. First, a nonlinear model determining the deflected shape of a laminate given a distribution of actuation voltages is derived. Second, a technique is employed to formulate the model as a map between input voltage and deflection alone, making it suitable for shape control. Finally, comparisons of simulated deflections with measured deflections of a fabricated active laminate are investigated.
This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.
We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.
A previous LDRD studying radiation hardened optoelectronic components for space-based applications led to the result that increased neutron irradiation from a fast-burst reactor caused increased responsivity in GaAs photodiodes up to a total fluence of 4.4 x 10{sup 13} neutrons/cm{sup 2} (1 MeV Eq., Si). The silicon photodiodes experienced significant degradation. Scientific literature shows that neutrons can both cause defects as well as potentially remove defects in an annealing-like process in GaAs. Though there has been some modeling that suggests how fabrication and radiation-induced defects can migrate to surfaces and interfaces in GaAs and lead to an ordering effect, it is important to consider how these processes affect the performance of devices, such as the basic GaAs p-i-n photodiode. In this LDRD, we manufactured GaAs photodiodes at the MESA facility, irradiated them with electrons and neutrons at the White Sands Missile Range Linac and Fast Burst Reactor, and performed measurements to show the effect of irradiation on dark current, responsivity and high-speed bandwidth.
Particle image velocimetry (PIV) data have been acquired using three different experimental configurations in the far-field of the interaction created by a transverse supersonic jet exhausting from a flat plate into a transonic crossflow. The configurations included two-component PIV in the centerline streamwise plane at two overlapping downstream stations, as well as stereoscopic PIV in both the same streamwise plane and in the crossplane. All measurement planes intersected at a common line. Data from both two-component measurement stations and the stereoscopic streamwise configuration agreed to within the estimated uncertainty, but data from the crossplane exhibited reduced velocity and turbulent stress magnitudes by a small but significant degree. Subsequent reprocessing of the data in nominally the same manner using a newer software package brought all values into close agreement with each other, but produced turbulent stresses substantially higher than those from the first software package. The error source associated with the choice of software was traced to the use of image deformation in the newer software to treat velocity gradients, which synthetic PIV tests show yields a more accurate result for turbulence measurements even for gradients within the recommended limits for classical PIV. These detailed comparisons of redundant data suggest that routine methods of uncertainty quantification may not fully capture the error sources of an experiment.
An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.
The Galerkin projection procedure for construction of reduced order models of compressible flow is examined as an alternative discretization of the governing differential equations. The numerical stability of Galerkin models is shown to depend on the choice of inner product for the projection. For the linearized Euler equations, a symmetry transform leads to a stable formulation for the inner product. Boundary conditions for compressible flow that preserve stability of the reduced order model are constructed. Coupling with a linearized structural dynamics model is made possible through the solid wall boundary condition. Preservation of stability for the discrete implementation of the Galerkin projection is made possible using piecewise-smooth finite element bases. Stability of the coupled fluid/structure system is examined for the case of uniform flow past a thin plate. Stability of the reduced order model for the fluid is demonstrated on several model problems, where a suitable approximation basis is generated using proper orthogonal decomposition of a transient computational fluid dynamics simulation.
Understanding and controlling friction in micromachine interfaces is critical to the reliability and operational efficiency of microelectromechanical systems (MEMS). The relatively high adhesion forces and friction forces encountered in these devices often present major obstacles to the design of reliable MEMS devices. Using surface micromachining, arrays of microstructures are being designed and tested to examine the adhesion characteristics, static friction behavior, and dynamic friction response. Emphasis is also being given to the control and actuation of the test structures and the modeling of the dynamic response and contact mechanics at the interface. Specifically, the purpose of the research is to fabricate and test MEMS devices in order to obtain insight into the effect of surface topography, material properties, surface chemical state, environmental conditions, and contact load on the static and dynamic characteristics of the contact interface.
This paper presents an overview of algorithms for directing messages through networks of varying topology. These are commonly referred to as routing algorithms in the literature that is presented. In addition to providing background on networking terminology and router basics, the paper explains the issues of deadlock and livelock as they apply to routing. After this, there is a discussion of routing algorithms for both store-and-forward and wormhole-switched networks. The paper covers both algorithms that do and do not adapt to conditions in the network. Techniques targeting structured as well as irregular topologies are discussed. Following this, strategies for routing in the presence of faulty nodes and links in the network are described.
Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.
Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.
The spreading of solutes or contaminants through water-distribution pipe networks is controlled largely by mixing at pipe junctions where varying flow rates and concentrations can enter the junction. Alternative models of solute mixing within these pipe junctions are presented in this paper. Simple complete-mixing models are discussed along with rigorous computational-fluid-dynamics models based on turbulent Navier-Stokes equations. In addition, a new model that describes the bulk-mixing behavior resulting from different flow rates entering and leaving the junction is developed in this paper. Comparisons with experimental data have confirmed that this bulk-mixing model provides a lower bound to the amount of mixing that can occur within a pipe junction, while the complete-mixing model yields an upper bound. In addition, a simple scaling parameter is used to estimate the actual (intermediate) mixing behavior based on the bounding predictions of the complete-mixing and bulk-mixing models. These simple analytical models can be readily implemented into network-scale models to develop predictions and bounding scenarios of solute transport and water quality in water-distribution systems.
We describe the design and performance of a high-repetition-rate single-frequency passively Q-switched Yb:YAG microlaser operating near 1030 nm. By using short cavity length, an intracavity Brewster polarizer, and an etalon output coupler, we are able to produce {approx}1-ns-long single-frequency pulses at repetition rates up to 19 kHz without shot-to-shot mode hopping. The laser's output spatial mode is TEM{sub 00} and its pulse energy varies between 31 {micro}J and 47 {micro}J depending on repetition rate. Its peak optical-to-optical efficiency is 22%.