Publications

25 Results
Skip to search filters

Sensitivity of Infrastructure Sectors to the Disruption of Commercial Electric Power

Stamber, Kevin L.; Aamir, Munaf S.; Beyeler, Walter E.; Brown, Theresa J.; Bynum, Leo B.; Corbet, Thomas F.; Flanagan, Tatiana P.; Kelic, Andjelka; Pate, Ronald P.; Tenney, Craig M.; Tidwell, Vincent C.

Electric power is crucial to the function of other infrastructures, as well as to the stability of the economy and the social order. Disruption of commercial electric power service, even for brief periods of time, can create significant consequences to the function of other sectors, and make living in some environments untenable. This analysis, conducted in 2017 for the United States Department of Energy (DOE) as part of the Grid Modernization Laboratory Consortium (GMLC) Initiative, focuses on describing the function of each of the other infrastructure sectors and subsectors, with an eye towards those elements of these sectors that depend on primary electric power service through the commercial electric power grid. It leverages the experience of Sandia analysts in analyzing historical disruptive events, and from the development of capabilities designed to identify the physical, logical, and geographic connectivity between infrastructures. The analysis goes on to identify alternatives for the provision of primary electric power service, and the redundancy of said alternatives, to provide a picture of the sector’s ability to withstand an extended disruption.

More Details

A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

Reliability Engineering and System Safety

Corbet, Thomas F.; Beyeler, Walter E.; Wilson, Michael L.; Flanagan, Tatiana P.

Simulation models can improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, then on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.

More Details

GeoVision Analysis: Reservoir Maintenance and Development Task Force Report (GeoVision Analysis Supporting Task Force Report : Reservoir Maintenance and Development)

Lowry, Thomas S.; Finger, John T.; Carrigan, Charles R.; Foris, Adam J.; Kennedy, Mack B.; Corbet, Thomas F.; Doughty, Christine A.; Pye, Stephen P.; Sonnenthal, Eric L.

This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conduc ting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study can be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.

More Details

Natural gas network resiliency to a "shakeout scenario" earthquake

Ellison, James; Corbet, Thomas F.

A natural gas network model was used to assess the likely impact of a scenario San Andreas Fault earthquake on the natural gas network. Two disruption scenarios were examined. The more extensive damage scenario assumes the disruption of all three major corridors bringing gas into southern California. If withdrawals from the Aliso Canyon storage facility are limited to keep the amount of stored gas within historical levels, the disruption reduces Los Angeles Basin gas supplies by 50%. If Aliso Canyon withdrawals are only constrained by the physical capacity of the storage system to withdraw gas, the shortfall is reduced to 25%. This result suggests that it is important for stakeholders to put agreements in place facilitating the withdrawal of Aliso Canyon gas in the event of an emergency.

More Details

Earthquake warning system for infrastructures : a scoping analysis

Kelic, Andjelka; Stamber, Kevin L.; Brodsky, Nancy S.; Vugrin, Eric D.; Corbet, Thomas F.; O'Connor, Sharon L.

This report provides the results of a scoping study evaluating the potential risk reduction value of a hypothetical, earthquake early-warning system. The study was based on an analysis of the actions that could be taken to reduce risks to population and infrastructures, how much time would be required to take each action and the potential consequences of false alarms given the nature of the action. The results of the scoping analysis indicate that risks could be reduced through improving existing event notification systems and individual responses to the notification; and production and utilization of more detailed risk maps for local planning. Detailed maps and training programs, based on existing knowledge of geologic conditions and processes, would reduce uncertainty in the consequence portion of the risk analysis. Uncertainties in the timing, magnitude and location of earthquakes and the potential impacts of false alarms will present major challenges to the value of an early-warning system.

More Details
25 Results
25 Results