Publications

18 Results
Skip to search filters

Nanomechanical switch for integration with CMOS logic

Proposed for publication in the Journal of Microelectronics and Micromechanics.

Czaplewski, David A.; Patrizi, G.A.; Kraus, Garth K.; Wendt, J.R.; Nordquist, Christopher N.; Wolfley, Steven L.; De Boer, Maarten P.

We designed, fabricated and measured the performance of nanoelectromechanical (NEMS) switches. Initial data are reported with one of the switch designs having a measured switching time of 400 ns and an operating voltage of 5 V. The switches operated laterally with unmeasurable leakage current in the 'off' state. Surface micromachining techniques were used to fabricate the switches. All processing was CMOS compatible. A single metal layer, defined by a single mask step, was used as the mechanical switch layer. The details of the modeling, fabrication and testing of the NEMS switches are reported.

More Details

Improved etch resistance of ZEP 520A in reactive ion etching through heat and ultraviolet light treatment

Proposed for publication in the Journal of Vacuum Science and Technology B.

Czaplewski, David A.; Tallant, David T.; Patrizi, G.A.; Wendt, J.R.

The authors have developed a treatment process to improve the etch resistance of an electron beam lithography resist (ZEP 520A) to allow direct pattern transfer from the resist into a hard mask using plasma etching without a metal lift-off process. When heated to 90 C and exposed for 17 min to a dose of approximately 8 mW/cm{sup 2} at 248 nm, changes occur in the resist that are observable using infrared spectroscopy. These changes increase the etch resistance of ZEP 520A to a CF{sub 4}/O{sub 2} plasma. This article will document the observed changes in the improved etch resistance of the ZEP 520A electron beam resist.

More Details

Integrated NEMS and optoelectronics for sensor applications

Czaplewski, David A.; Krishnamoorthy, Uma K.; Okandan, Murat O.; Olsson, Roy H.; Serkland, Darwin K.; Warren, M.E.

This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

More Details

Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems

Sullivan, John P.; Czaplewski, David A.; Friedmann, Thomas A.; Modine, N.A.; Wendt, J.R.

More Details

Nano-electromechanical oscillators (NEMOs) for RF technologies

Friedmann, Thomas A.; Boyce, Brad B.; Czaplewski, David A.; Dyck, Christopher D.; Webster, James R.; Carton, Andrew J.; Carr, Dustin W.; Keeler, Bianca E.; Wendt, J.R.; Tallant, David T.

Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need to be addressed for the successful application of these technologies have been identified.

More Details

Meso-scale controlled motion for a microfluidic drop ejector

Galambos, Paul; Pohl, Kenneth R.; Czaplewski, David A.; Benavides, Gilbert L.; Atwood, Clinton L.; Givler, R.C.

The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision/stage system allowing precise ejector package positioning in 3 dimensions above a target was developed.

More Details
18 Results
18 Results