Publications

Results 84601–84800 of 99,299

Search results

Jump to search filters

Interferometric measurements of dynamic polarizabilities for metal atoms using electrically exploding wires in vacuum

Physical Review A - Atomic, Molecular, and Optical Physics

Sarkisov, G.S.; Beigman, I.L.; Shevelko, V.P.; Struve, Kenneth

Measurements within 10% accuracy of the dynamic dipole polarizabilities α (λ) for five nonrefractory metal atoms (Mg, Ag, Al, Cu, and Au) at laser wavelengths of λ=532 and 1064 nm are presented using electrical explosion of thin wires in vacuum and a novel laser probing integrated-phase technique. The technique is based on single-wavelength interferometry and does not require axial symmetry of the tested object. Theoretical prediction of α (λ) for wavelengths λ=355, 532, and 1064 nm, as well as the static dipole polarizabilities αst, are also presented. An agreement within 20% was obtained between calculated data, recommended static polarizabilities αst, and the measured dynamic polarizabilities α (532 nm) and α (1064 nm). © 2006 The American Physical Society.

More Details

Edge energies: Atomistic calculations of a continuum quantity

Physical Review B - Condensed Matter and Materials Physics

Hamilton, John C.

Controlling the properties of self-assembled nanostructures requires controlling their shape. Size-dependent shape transitions, frequently observed at nanolength scales, are commonly attributed to edge energy effects. To rigorously test such theories against experiment, quantitative atomistic calculations of edge energies are essential, yet none exist. I describe a fundamental ambiguity in the atomistic definition of edge energies, propose a definition based on equimolar dividing surfaces, and present an atomistic calculation of edge energies for Pd clusters. © 2006 The American Physical Society.

More Details

Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. Parametric study

Combustion and Flame

Hawkes, Evatt R.; Sankaran, Ramanan; Pébay, Philippe P.; Chen, Jacqueline H.

The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry. Parametric studies on the effect of the initial amplitude of the temperature fluctuations, the initial length scales of the temperature and velocity fluctuations, and the turbulence intensity are performed. The combustion mode is characterized using the diagnostic measures developed in Part I of this study. Specifically, the ignition front speed and the scalar mixing timescales are used to identify the roles of molecular diffusion and heat conduction in each case. Predictions from a multizone model initialized from the DNS fields are presented and differences are explained using the diagnostic tools developed. © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. Fundamental analysis and diagnostics

Combustion and Flame

Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan; Mason, Scott D.; Im, Hong G.

The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method

Computer Methods in Applied Mechanics and Engineering

Hughes, Thomas J.R.; Scovazzi, Guglielmo S.; Bochev, Pavel B.; Buffa, Annalisa

Proliferation of degrees-of-freedom has plagued discontinuous Galerkin methodology from its inception over 30 years ago. This paper develops a new computational formulation that combines the advantages of discontinuous Galerkin methods with the data structure of their continuous Galerkin counterparts. The new method uses local, element-wise problems to project a continuous finite element space into a given discontinuous space, and then applies a discontinuous Galerkin formulation. The projection leads to parameterization of the discontinuous degrees-of-freedom by their continuous counterparts and has a variational multiscale interpretation. This significantly reduces the computational burden and, at the same time, little or no degradation of the solution occurs. In fact, the new method produces improved solutions compared with the traditional discontinuous Galerkin method in some situations. © 2005 Elsevier B.V. All rights reserved.

More Details

Spatially resolved temperature mapping of electrothermal actuators by surface Raman scattering

Journal of Microelectromechanical Systems

Kearney, Sean P.; Phinney, Leslie; Baker, Michael S.

In this paper, we report spatially resolved temperature profiles along the legs of working V-shaped electrothermal (ET) actuators using a surface Raman scattering technique. The Raman probe provides nonperturbing optical data with a spatial resolution of 1.2 μm, which is required to observe the 3-μm-wide actuator beams. A detailed uncertainty analysis reveals that our Raman thermometry of polycrystalline silicon is performed with fidelity of ±10 to 11 K when the peak location of the Stokes-shifted optical phonon signature is used as an indicator of temperature. This level of uncertainty is sufficient for temperature mapping of many working thermal MEMS devices which exhibit characteristic temperature differences of several hundred Kelvins. To our knowledge, these are the first quantitative and spatially resolved temperature data available for thermal actuator structures. This new temperature data set can be used for validation of actuator thermal design models and these new results are compared with finite-difference simulations of actuator thermal performance. © 2006 IEEE.

More Details

Iterative optimized effective potential and exact exchange calculations at finite temperature

Modine, Normand A.; Wright, Alan F.; Muller, Richard P.; Sears, Mark P.; Wills, Ann E.; Desjarlais, Michael P.

We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

More Details

Photoinduced refractive index change and absorption bleaching in poly(methylphenylsilane) under varied ambients

Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B

Potter, B.G.; Chandra, H.; Simmons-Potter, K.; Jamison, Gregory M.; Thomes, W.J.

Polysilane materials exhibit large photo-induced refractive index changes under low incident optical fluences, making them attractive candidates for applications in which rapid patterning of photonic device structures is desired immediately prior to their use. This agile fabrication strategy for integrated photonics inherently requires that optical exposure, and associated material response, occurs in nonlaboratory environments, motivating the study of environmental conditions on the photoinduced response of the material. The present work examines the impact of atmosphere on the photosensitive response of poly(methylphenylsilane) (PMPS) thin films in terms of both photoinduced absorption change and refractive index modification. Material was subjected to UV light exposure resonant with the lowest energy optical transition associated with the conjugated Si-Si backbone. Exposures were performed in both aerobic and anaerobic atmospheres (oxygen, air, nitrogen, and 5% H2/95% N 2). The results clearly demonstrate that the photosensitive response of this model polysilane material was dramatically affected by local environment, exhibiting a photoinduced refractive index change, when exposed under an oxygen containing atmosphere, that was twice that observed under anaerobic conditions. This effect is discussed in terms of photo-oxidation processes within the polysilane structure and in the context of the need for predictable photosensitive refractive index change in varied photoimprinting environments.

More Details

A global perspective on energy markets and economic integration

Baker, Arnold B.

What will be the effect of Iraqi domestic instability on Iraqi oil production Negotiations for Iranian nuclear technology on Iranian oil supplies Saudi commitment to expanded oil production President Putin's policies on Russian oil and natural gas supplies President Chavez's policies on Venezuelan oil supplies Instability in Nigeria Higher oil prices on world economic growth Effect of economic growth on oil demand in China, India, U.S., etc. Higher oil prices on non-OPEC oil supplies

More Details

Microsystem product development

Polosky, Marc A.; Garcia, Ernest J.

Over the last decade the successful design and fabrication of complex MEMS (MicroElectroMechanical Systems), optical circuits and ASICs have been demonstrated. Packaging and integration processes have lagged behind MEMS research but are rapidly maturing. As packaging processes evolve, a new challenge presents itself, microsystem product development. Product development entails the maturation of the design and all the processes needed to successfully produce a product. Elements such as tooling design, fixtures, gages, testers, inspection, work instructions, process planning, etc., are often overlooked as MEMS engineers concentrate on design, fabrication and packaging processes. Thorough, up-front planning of product development efforts is crucial to the success of any project.

More Details

Trace Contraband Detection Field-Test by the South Texas Specialized Crimes and Narcotics Task Force

Hannum, David W.; Shannon, Gary W.

This report describes the collaboration between the South Texas Specialized Crimes and Narcotics Task Force (STSCNTF) and Sandia National Laboratories (SNL) in a field test that provided prototype hand-held trace detection technology for use in counter-drug operations. The National Institute of Justice (NIJ)/National Law Enforcement and Corrections Technology Center (NLECTC)/Border Research and Technology Center (BRTC) was contacted by STSCNTF for assistance in obtaining cutting-edge technology. The BRTC created a pilot project for Sandia National Laboratories (SNL) and the STSCNTF for the use of SNL’s Hound, a hand-held sample collection and preconcentration system that, when combined with a commercial chemical detector, can be used for the trace detection of illicit drugs and explosives. The STSCNTF operates in an area of high narcotics trafficking where methods of concealment make the detection of narcotics challenging. Sandia National Laboratories’ (SNL) Contraband Detection Department personnel provided the Hound system hardware and operational training. The Hound system combines the GE VaporTracer2, a hand-held commercial chemical detector, with an SNL-developed sample collection and preconcentration system. The South Texas Task force reported a variety of successes, including identification of a major shipment of methamphetamines, the discovery of hidden compartments in vehicles that contained illegal drugs and currency used in drug deals, and the identification of a suspect in a nightclub shooting. The main advantage of the hand-held trace detection unit is its ability to quickly identify the type of chemical (drugs or explosives) without a long lag time for laboratory analysis, which is the most common analysis method for current law enforcement procedures.

More Details

First high-temperature electronics products survey 2005

Normann, Randy A.

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

More Details

Verification of LHS distributions

Swiler, Laura P.

This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.

More Details

ASC-AD penetration modeling FY05 status report

Chiesa, Michael L.; Settgast, Randy; Kistler, Bruce L.; Bhutani, Nipun; Ohashi, Yuki; Ostien, Jakob T.; Antoun, Bonnie R.; Korellis, John S.; Marin, Esteban B.

Sandia currently lacks a high fidelity method for predicting loads on and subsequent structural response of earth penetrating weapons. This project seeks to test, debug, improve and validate methodologies for modeling earth penetration. Results of this project will allow us to optimize and certify designs for the B61-11, Robust Nuclear Earth Penetrator (RNEP), PEN-X and future nuclear and conventional penetrator systems. Since this is an ASC Advanced Deployment project the primary goal of the work is to test, debug, verify and validate new Sierra (and Nevada) tools. Also, since this project is part of the V&V program within ASC, uncertainty quantification (UQ), optimization using DAKOTA [1] and sensitivity analysis are an integral part of the work. This project evaluates, verifies and validates new constitutive models, penetration methodologies and Sierra/Nevada codes. In FY05 the project focused mostly on PRESTO [2] using the Spherical Cavity Expansion (SCE) [3,4] and PRESTO Lagrangian analysis with a preformed hole (Pen-X) methodologies. Modeling penetration tests using PRESTO with a pilot hole was also attempted to evaluate constitutive models. Future years work would include the Alegra/SHISM [5] and AlegrdEP (Earth Penetration) methodologies when they are ready for validation testing. Constitutive models such as Soil-and-Foam, the Sandia Geomodel [6], and the K&C Concrete model [7] were also tested and evaluated. This report is submitted to satisfy annual documentation requirements for the ASC Advanced Deployment program. This report summarizes FY05 work performed in the Penetration Mechanical Response (ASC-APPS) and Penetration Mechanics (ASC-V&V) projects. A single report is written to document the two projects because of the significant amount of technical overlap.

More Details

Multilinear operators for higher-order decompositions

Kolda, Tamara G.; Dunlavy, Daniel M.; Kegelmeyer, William P.

We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

More Details

A 50-100 kWe gas-cooled reactor for use on Mars

Peters, Curtis

In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

More Details

Hemispheric ultra-wideband antenna

Brocato, Robert W.

This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

More Details

A Digest of Nonproliferation Literature

Duggan, Ruth A.

In preparation for the 2005 US/Russian Weapons Laboratories Directors Meeting, the six laboratories participating in the meeting endeavored to develop a strategy for nonproliferation technology research and development. A literature review was conducted to identify possible areas of technical collaboration and technology opportunities associated with improving nonproliferation associated with the civilian nuclear fuel cycle. The issue of multinationalization of the nuclear fuel cycle was also researched. This digest is the compilation of one-page summaries used by management of the three US nuclear weapons laboratories in preparation for strategy development. Where possible, the Web site address of the complete paper is referenced.3 AcknowledgementsThe author wishes to thank Jessica Ruyle, Nancy Orlando-Gay, and Barbara Dry for their research assistance and contributions.4

More Details

A Science-Based Understanding of Cermet Processing

Roach, Robert A.; Kilgo, Alice C.; Susan, Donald F.; Van Ornum, David J.

This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Due to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper, slurry injection rate, via prewetting, slurry injection angle, filter paper prewetting, and slurry mixing time. Many of these factors did not have an influence on defect formation. In order of decreasing importance, critical factors for defect formation by slurry filling are vacuum time (20 sec. optimal), slurry solids loading (20.0 g of cermet with 13.00 g of DGBEA solvent (21.2 vol%)), filling with the pipette in a vertical position, and faster injection rates (%7E765 l/s) as preferable to slower. No further recommendations for improvement to this process can be suggested. All findings of the slurry filling process have been transferred to CeramTec, the supplier. Paste filling methods appear to show more promise of increasing production yields. The types of flaws commonly found in slurry-filled vias were identified and followed throughout the entire source feedthru process. In general, all sizes of cracks healed during isopressing and firing steps. Additionally, small to medium sized voids (less than 1/3 the via diameter) can be healed. Porosity will usually lead to via necking, which may cause the part to be out of specification. Large voids (greater 4 than 1/3 of the diameter) and partial fills are not healed or produce significant necking. 2.Viability of High-Solids-Loading-Cermet Paste for Filling Source Feedthru ViaThe paste-filling process is easy to implement and easier to use. The high solids loading (>40 vol %) reduces the incidence of drying defects, which are seen in slurry filled (%7E23 vol %) vias. Additionally, the way in which the vias are filled (the paste is pushed from entrance to exit, displacing air as the paste front progresses), reduces the chance of entrapped voids, which are common in the slurry filling process. From the fair number of samples already filled, the likelihood of this process being a viable and reliable process is very good. Issues of concern for the paste process, as with any new process, are any problems that may arise in subsequent manufacturing stages of the neutron tube that may be affected by subtle changes in microstructure. Both MC4277 and MC4300-type source feedthrus were paste-filled by hand. X-ray analysis showed a much lower existence of voids in the green parts as compared to slurry-filled parts. The paste shows improvements in shelf life (weeks) as compared to slurry (minutes). This method of introducing the cermet to the via also lends itself very well to an automated filling process where a machine can either drill vias or, with the aid of a vision system, find pre-drilled vias and fill them with paste. The pastes used in this work prove the concept of this automated filling process as MC4277 sources have been filled using such a prototype machine, however, better performing pastes can be developed which are less hazardous (aqueous systems). The paste process was also used to successfully fill MC4300 "dogleg" type sources.3.Optimize CND50 Two methods of creating granulated cermet powder for comparison with dry-ball milled CND50 were explored. The first method, non-aqueous spray drying, was performed at Niro Inc. used a 40/60 (wt %) ethanol/toluene solvent and three binder systems; polyvinyl butyral (B79), ethylcellulose (Ethocel), and hydroxypropylcellulose (Klucel). Due to the nature of small spray-dry systems, an excess amount of fines was present in the granulated powder, which may have contributed to the low angles of repose (68 to 78). This is a moderate increase in 5 flowability as standard dry-ball milled powder possesses an angle of repose of 79-89. Mist granulated powders were produced with a tert-butanol solvent and polyvinyl butyral binder system. The angles of repose were more promising (28). More investigation into the mist granulation method is required. Also, aqueous spray drying may be possible with cermet and should be explored. Compaction of all granulated powders is much closer to a proven pressing powder (Sandi94 - angle of repose 29) which should allow cermet to be pressed to near net shape where die filling is difficult for non-flowing powders.4.Microstructure Characterization An analytical technique was developed to numerically characterize microstructures in terms of molybdenum dispersion, homogeneity, and percolation indices. This technique was applied to dry-ball-milled samples of various ball-milling times (0.5 to 20 hours). Significant change in the microstructure could be seen with milling time. Increased milling time caused agglomeration of molybdenum particles, increasing the percolation index, whereas short milling times promoted higher dispersion indices. This phenomenon is contrary to conventional understanding of mixing. However, conventional ball milling does not usually incorporate granules with binder and separate particles. This discrepancy may explain the odd mixing behavior. It is important to note that the high percolation index possessed by long ball mill times showed lower electrical resistance than low-percolation-index microstructures. However, machinability of high percolation, low-dispersion-index microstructures were poor as compared to microstructures with high dispersion indices and moderate percolation indices. This trade-off between dispersion and percolation (at constant molybdenum levels) suggests that microstructures can be achieved that posses good mechanical and electrical properties. Coincidentally, microstructures that satisfy this condition are produced by the standard dry-ball-milled CND50 (4 hour ball mill time). The performance and sensitivity of the microstructure characterization technique should be evaluated, specifically for electrical conductivity. Processing techniques to decrease the percolation index (lowering molybdenum content, excess ball milling, 6 larger molybdenum particles, etc.) should be employed to determine the point where cermet is not conductive or falls below electrical conduction specifications.7

More Details

Closed Brayton cycle power conversion systems for nuclear reactors :

Wright, Steven A.; Lipinski, Ronald; Vernon, Milton E.

This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

More Details

Automatic compensation of antenna beam roll-off in SAR images

Doerry, Armin W.

The effects of a non-uniform antenna beam are sometimes visible in Synthetic Aperture Radar (SAR) images. This might be due to near-range operation, wide scenes, or inadequate antenna pointing accuracy. The effects can be mitigated in the SAR image by fitting very a simple model to the illumination profile and compensating the pixel brightness accordingly, in an automated fashion. This is accomplished without a detailed antenna pattern calibration, and allows for drift in the antenna beam alignments.

More Details

Mixing in polymeric microfluidic devices

Sun, Amy C.; Schunk, Peter R.

This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Physical constrictions were investigated through simulations. The results show that the maximum mixing occurs when the height of the mixing region is minimized. Finally, experiments were performed to determine the effectiveness of using porous polymer monoliths to enhance mixing. The porous polymer monoliths were constructed using a monomer/salt paste. Two salt crystal size ranges were used; 75 to 106 microns and 53 to 180 microns. Mixing in the porous polymer monoliths fabricated with the 75 to 106 micron salt crystal size range was six times higher than a channel without a monolith. Mixing in the monolith fabricated with the 53 to 180 micron salt crystal size range was nine times higher.

More Details

Robust optimization of contaminant sensor placement for community water systems

Mathematical Programming

Carr, Robert D.; Greenberg, Harvey J.; Hart, William E.; Konjevod, Goran; Lauer, Erik; Lin, Henry; Morrison, Tod; Phillips, Cynthia A.

We present a series of related robust optimization models for placing sensors in municipal water networks to detect contaminants that are maliciously or accidentally injected. We formulate sensor placement problems as mixed-integer programs, for which the objective coefficients are not known with certainty. We consider a restricted absolute robustness criteria that is motivated by natural restrictions on the uncertain data, and we define three robust optimization models that differ in how the coefficients in the objective vary. Under one set of assumptions there exists a sensor placement that is optimal for all admissible realizations of the coefficients. Under other assumptions, we can apply sorting to solve each worst-case realization efficiently, or we can apply duality to integrate the worst-case outcome and have one integer program. The most difficult case is where the objective parameters are bilinear, and we prove its complexity is NP-hard even under simplifying assumptions. We consider a relaxation that provides an approximation, giving an overall guarantee of near-optimality when used with branch-and-bound search. We present preliminary computational experiments that illustrate the computational complexity of solving these robust formulations on sensor placement applications.

More Details

The potential of sonic IR to inspect aircraft components traditionally inspected with fluorescent penetrant and or magnetic particle inspection

AIP Conference Proceedings

DiMambro, Joseph D.; Ashbaugh, D.M.; Han, X.; Favro, L.D.; Lu, J.; Zeng, Z.; Li, W.; Newaz, G.M.; Thomas, R.L.

Sandia National Laboratories Airworthiness Assurance Nondestructive Inspection Validation Center (AANC) provides independent and quantitative evaluations of new and enhanced inspection, to developers, users, and regulators of aircraft. Wayne State University (WSU) has developed and patented an inspection technique using high-power ultrasonic excitation and infrared technology to detect defects in a variety of materials. AANC and WSU are working together as part of the FAA Sonic Infrared Technology Transfer Program. The ultimate goal of the program is to implement Sonic IR in the aviation field where appropriate. The capability of Sonic IR imaging to detect cracks in components commonly inspected with magnetic particle or liquid penetrant inspection in the field is of interest to industry. © 2006 American Institute of Physics.

More Details

Combustion kinetics of coal chars in oxygen-enriched environments

Combustion and Flame

Murphy, Jeffrey J.; Shaddix, Christopher R.

Oxygen-enhanced and oxygen-fired pulverized coal combustion is actively being investigated to achieve emission reductions and reductions in flue gas cleanup costs, as well as for coal-bed methane and enhanced oil recovery applications. To fully understand the results of pilot scale tests and to accurately predict scale-up performance through CFD modeling, accurate rate expressions are needed to describe coal char combustion under these unconventional combustion conditions. In the work reported here, the combustion rates of two pulverized coal chars have been measured in both conventional and oxygen-enriched atmospheres. A combustion-driven entrained flow reactor equipped with an optical particle-sizing pyrometry diagnostic and a rapid-quench sampling probe has been used for this investigation. Highvale subbituminous coal and a high-volatile eastern United States bituminous coal have been investigated, over oxygen concentrations ranging from 6 to 36 mol% and gas temperatures of 1320-1800 K. The results from these experiments demonstrate that pulverized coal char particles burn under increasing kinetic control in elevated oxygen environments, despite their higher burning rates in these environments. Empirical fits to the data have been successfully performed over the entire range of oxygen concentrations using a single-film oxidation model. Both a simple nth-order Arrhenius expression and an nth-order Langmuir-Hinshelwood kinetic equation provide good fits to the data. Local fits of the nth-order Arrhenius expression to the oxygen-enriched and oxygen-depleted data produce lower residuals in comparison to fits of the entire dataset. These fits demonstrate that the apparent reaction order varies from 0.1 under near-diffusion-limit oxygen-depleted conditions to 0.5 under oxygen-enriched conditions. Burnout predictions show good agreement with measurements. Predicted char particle temperatures tend to be low for combustion in oxygen-depleted environments. © 2005 The Combustion Institute.

More Details

Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo

Journal of Computational Physics

Brunner, Thomas A.; Urbatsch, Todd J.; Evans, Thomas M.; Gentile, Nicholas A.

We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport on spatially decomposed meshes. Two of the algorithms are from the production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Improved versions of each of the existing algorithms are also presented. All algorithms were analyzed in an implementation of the KULL IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. The improved Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well load balanced problems. © 2005 Elsevier Inc. All rights reserved.

More Details

Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay

Small

Bachand, George D.; Rivera, Susan B.; Carroll-Portillo, Amanda C.; Hess, Henry; Bachand, George D.

The technique of active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay was described. Nanofluidic transport of macromolecules within living cells is achieved using a complex, three-dimensional network of cytoskeletal filaments and motor proteins. It is observed that glutaraldehyde crosslinking successfully linked fluorescent antibodies to MT shuttles. The application of kinesin and Ab-MT as mechanical actuators enables the development of nanofluidic systems that rely only on chemical energy for capturing and separating of target analytes from a complex solution.

More Details

Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough

Journal of Bacteriology

Chhabra, Swapnil R.; He, Q.; Huang, K.H.; Gaucher, Sara P.; Alm, E.J.; He, Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, Anup K.

Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organism's response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z ≥ 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13°C from a growth temperature of 37°C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors σ32 and σ54. While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976) and also several periplasmic ABC transporters. Copyright © 2006, American Society for Microbiology. All Rights Reserved.

More Details

Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(Urea)methyl vinyl silazane

International Journal of Applied Ceramic Technology

Cross, Tsali J.; Raj, Rishi; Prasad, Somuri V.; Tallant, David R.

A process for deposition of silicon oxycarbonitride films from poly(urea)methyl vinyl silazane (PUMVS) by spin coating precursor solutions onto a substrate, followed by polymerization, cross-linking and pyrolysis has been developed. The cross-linked polymer films (350 nm thick), deposited on variety substrates (e.g., silicon, sapphire, zirconia), were pyrolyzed in nitrogen or ammonia environments either in a hot isostatic press or in a tube furnace. Their microstructure was characterized using infrared and Raman spectroscopy. The tribological (friction and wear) behavior was evaluated in dry nitrogen and air with 50% relative humidity using a unidirectional linear wear tester in a ball-on-disk configuration. Wear surfaces, transfer films and wear debris were analyzed by scanning electron micrograph (SEM)/energy dispersive spectroscopy (EDS). © 2006 The American Ceramic Society.

More Details

Materials for homeland security

Advanced Materials and Processes

Hey, Nigel; Allard, Thurman J.; Romig Jr., Alton D.; Dravid, Vinayak P.

The Materials Applications for Homeland Security session at the Materials Science and Technology 2005 (MS&T'05) Conference discussed new countermeasures related to anticipate, prevent, respond to, and recover from acts of terrorism. Examples were given of how science and technology have contributed to counter-terrorism, as with the development of sensor systems and in effects mitigation, where the latter protect people and physical assets in the event of attack. However, it is also important that the S&T community consider the technical capabilities of end-users. Jon MacLaren of the DHS Risk Assessment program discussed the threats to critical infrastructures while Jiann-Yang (Jim) Hwang and Bowen Li of Michigan Technological University described active antibacterial/antifungal coatings made of low-cost vermiculite in which magnesium ions are replaced with copper ions. Dr. John Vitko of the Department of Homeland Security oversees a broad-ranging program from surveillance to forensics and consequence management, from personnel training to development of anti-viral drugs. Vinayak Dravid described bio-chem assay microsensor which offer versatility for sensing biological and chemical threats, and provide significant advantages over alternatives.

More Details

Dynamic response of shock-loaded multi-component glasses

Alexander, Charles S.; Vogler, Tracy J.; Reinhart, William D.; Chhabildas, L.C.

Glass, in various formulations, may be useful as a transparent armor material. Fused quartz (SiO{sub 2}), modified with either B{sub 2}O{sub 3} (13 % wt.) or Na{sub 2}O (15 % wt.), was studied to determine the effect on the dynamic response of the material. Utilizing powder and two-stage light gas guns, plate impact experiments were conducted to determine the effect on strength properties, including the elastic limits and plastic deformation response. Further, the effect of glass modification on known transitions to higher density phases in fused quartz was evaluated. Results of these experiments will be presented and discussed.

More Details

Power sources manufactures association : power technology roadmap workshop - 2006

The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

More Details

Computer Science Research Institute 2003 annual report of activities

Collis, Samuel S.

This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2003 to December 31, 2003. During this period the CSRI hosted 164 visitors representing 78 universities, companies and laboratories. Of these 78 were summer students or faculty members. The CSRI partially sponsored 5 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 178 participants--137 from universities, companies and laboratories, and 41 from Sandia. Finally, the CSRI sponsored 18 long-term collaborative research projects and 5 Sabbaticals.

More Details

Computer Science Research Institute 2004 annual report of activities

Collis, Samuel S.

This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2004 to December 31, 2004. During this period the CSRI hosted 166 visitors representing 81 universities, companies and laboratories. Of these 65 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 4 workshops. These 4 CSRI sponsored workshops had 140 participants--74 from universities, companies and laboratories, and 66 from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects and 5 Sabbaticals.

More Details

Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings

Moore, Robert C.; Swift, Peter; Brady, Patrick V.

The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

More Details

Ion-induced gammas for photofission interrogation of HEU

Doyle, B.L.; Morse, Daniel H.; Provencio, P.N.

High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.

More Details

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs

Walford, Christopher A.

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

More Details

Impact of distributed energy resources on the reliability of a critical telecommunications facility

Robinson, David G.; Atcitty, Stanley; Zuffranieri, Jason V.

This report documents a probabilistic risk assessment of an existing power supply system at a large telecommunications office. The focus is on characterizing the increase in the reliability of power supply through the use of two alternative power configurations. Telecommunications has been identified by the Department of Homeland Security as a critical infrastructure to the United States. Failures in the power systems supporting major telecommunications service nodes are a main contributor to major telecommunications outages. A logical approach to improve the robustness of telecommunication facilities would be to increase the depth and breadth of technologies available to restore power in the face of power outages. Distributed energy resources such as fuel cells and gas turbines could provide one more onsite electric power source to provide backup power, if batteries and diesel generators fail. The analysis is based on a hierarchical Bayesian approach and focuses on the failure probability associated with each of three possible facility configurations, along with assessment of the uncertainty or confidence level in the probability of failure. A risk-based characterization of final best configuration is presented.

More Details

Passive wireless sensing tags NASA inflatable structures

Brocato, Robert W.

This report gives a description of several types of wireless, unpowered remote sensors. Surface acoustic wave (SAW) devices were coupled with conventional sensors to create entirely new types of sensors. These sensors report physically measurable data in the same manner as the conventional sensors, but they do it remotely and without any local power source. The sensors are measured remotely using a radar-like interrogation device, and the sensors and their related communication electronics draw all of the power needed for communicating from the radar pulse. The report covers only a description of prototype sensors and not of the manufacturing requirements of these devices.

More Details

Pilot test specific test plan for the removal of arsenic Socorro, New Mexico

Siegel, Malcolm; Marbury, Justin L.; Everett, Randy; Dwyer, Brian P.; Collins, Sue S.; Cappelle, Malynda A.; Aragon, Alicia R.

Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative drinking water treatment technologies designed to meet the new arsenic maximum contaminant level (MCL) of 10 {micro}g/L (effective January 2006). As currently envisioned, pilots tests may include multiple phases. Phase I tests will involve side-by-side comparisons of several commercial technologies primarily using design parameters suggested by the Vendors. Subsequent tests (Phase II) may involve repeating some of the original tests, testing the same commercial technologies under different conditions and testing experimental technologies or additional commercial technologies. This Pilot Test Specific Test Plan (PTSTP) was written for Phase I of the Socorro Springs Pilot. The objectives of Phase I include evaluation of the treatment performance of five adsorptive media under ambient pH conditions (approximately 8.0) and assessment of the effect of contact time on the performance of one of the media. Addenda to the PTSTP may be written to cover Phase II studies and supporting laboratory studies. The Phase I demonstration began in the winter of 2004 and will last approximately 9 months. The information from the test will help the City of Socorro choose the best arsenic treatment technology for the Socorro Springs well. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association (AWWA) Research Foundation, SNL, and WERC (A Consortium for Environmental Education and Technology Development).

More Details

Chemical analyses of soil samples collected from the Sandia National Laboratories, New Mexico environs, 1993-2005

Miller, Mark L.; Deola, Regina A.; Herrera, Heidi M.; Oldewage, Hans D.

From 1993 through 2005, the Environmental Management Department of Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM), has collected soil and sediment samples at numerous locations on-site, on the perimeter, and off-site for the purpose of determining potential impacts to the environs from operations at the Laboratories. These samples were submitted to an analytical laboratory for metal-in-soil analyses. Intercomparisons of these results were then made to determine if there was any statistical difference between on-site, perimeter, and off-site samples, or if there were year-to-year increasing or decreasing trends which indicated that further investigation may be warranted. This work provided the SNL Environmental Management Department with a sound baseline data reference against which to assess potential current operational impacts or to compare future operational impacts. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data is presented in graphical format with narrative commentaries on particular items of interest.

More Details

Extended defense systems :I. adversary-defender modeling grammar for vulnerability analysis and threat assessment

Merkle, Peter B.

Vulnerability analysis and threat assessment require systematic treatments of adversary and defender characteristics. This work addresses the need for a formal grammar for the modeling and analysis of adversary and defender engagements of interest to the National Nuclear Security Administration (NNSA). Analytical methods treating both linguistic and numerical information should ensure that neither aspect has disproportionate influence on assessment outcomes. The adversary-defender modeling (ADM) grammar employs classical set theory and notation. It is designed to incorporate contributions from subject matter experts in all relevant disciplines, without bias. The Attack Scenario Space U{sub S} is the set universe of all scenarios possible under physical laws. An attack scenario is a postulated event consisting of the active engagement of at least one adversary with at least one defended target. Target Information Space I{sub S} is the universe of information about targets and defenders. Adversary and defender groups are described by their respective Character super-sets, (A){sub P} and (D){sub F}. Each super-set contains six elements: Objectives, Knowledge, Veracity, Plans, Resources, and Skills. The Objectives are the desired end-state outcomes. Knowledge is comprised of empirical and theoretical a priori knowledge and emergent knowledge (learned during an attack), while Veracity is the correspondence of Knowledge with fact or outcome. Plans are ordered activity-task sequences (tuples) with logical contingencies. Resources are the a priori and opportunistic physical assets and intangible attributes applied to the execution of associated Plans elements. Skills for both adversary and defender include the assumed general and task competencies for the associated plan set, the realized value of competence in execution or exercise, and the opponent's planning assumption of the task competence.

More Details

Model reduction of systems with localized nonlinearities

Segalman, Daniel J.

An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

More Details

NAS battery demonstration at American Electric Power:a study for the DOE energy storage program

Huff, Georgianne

The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

More Details

Geologic technical assessment of the Chacahoula Salt Dome, Louisiana, for potential expansion of the U.S. strategic petroleum reserve

Lord, Anna S.; Rautman, Christopher A.

The Chacahoula salt dome, located in southern Louisiana, approximately 66 miles southwest of New Orleans, appears to be a suitable site for a 160-million-barrel-capacity expansion facility for the U.S. Strategic Petroleum Reserve, comprising sixteen 10-million barrel underground storage caverns. The overall salt dome appears to cover an area of some 1800 acres, or approximately 2.8 square miles, at a subsea elevation of 2000 ft, which is near the top of the salt stock. The shallowest known salt is present at 1116 ft, subsea. The crest of the salt dome is relatively flatlying, outward to an elevation of -4000 ft. Below this elevation, the flanks of the dome plunge steeply in all directions. The dome appears to comprise two separate spine complexes of quasi-independently moving salt. Two mapped areas of salt overhang, located on the eastern and southeastern flanks of the salt stock, are present below -8000 ft. These regions of overhang should present no particular design issues, as the conceptual design SPR caverns are located in the western portion of the dome. The proposed cavern field may be affected by a boundary shear zone, located between the two salt spines. However, the large size of the Chacahoula salt dome suggests that there is significant design flexibility to deal with such local geologic issues.

More Details

A multi-scale Q1/P0 approach to langrangian shock hydrodynamics

Scovazzi, Guglielmo S.; Love, Edward

A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed technique is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.

More Details

The verdict geometric quality library

Pebay, Philippe P.; Knupp, Patrick K.; Thompson, David

Verdict is a collection of subroutines for evaluating the geometric qualities of triangles, quadrilaterals, tetrahedra, and hexahedra using a variety of metrics. A metric is a real number assigned to one of these shapes depending on its particular vertex coordinates. These metrics are used to evaluate the input to finite element, finite volume, boundary element, and other types of solvers that approximate the solution to partial differential equations defined over regions of space. The geometric qualities of these regions is usually strongly tied to the accuracy these solvers are able to obtain in their approximations. The subroutines are written in C++ and have a simple C interface. Each metric may be evaluated individually or in combination. When multiple metrics are evaluated at once, they share common calculations to lower the cost of the evaluation.

More Details

Electronic structure of intrinsic defects in crystalline germanium telluride

Physical Review B - Condensed Matter and Materials Physics

Edwards, Arthur H.; Pineda, Andrew C.; Schultz, Peter A.; Martin, Marcus G.; Thompson, A.P.; Hjalmarson, Harold P.; Umrigar, Cyrus J.

Germanium telluride undergoes rapid transition between polycrystalline and amorphous states under either optical or electrical excitation. While the crystalline phases are predicted to be semiconductors, polycrystalline germanium telluride always exhibits p -type metallic conductivity. We present a study of the electronic structure and formation energies of the vacancy and antisite defects in both known crystalline phases. We show that these intrinsic defects determine the nature of free-carrier transport in crystalline germanium telluride. Germanium vacancies require roughly one-third the energy of the other three defects to form, making this by far the most favorable intrinsic defect. While the tellurium antisite and vacancy induce gap states, the germanium counterparts do not. A simple counting argument, reinforced by integration over the density of states, predicts that the germanium vacancy leads to empty states at the top of the valence band, thus giving a complete explanation of the observed p -type metallic conduction.

More Details

Surface micromachined microfluidics - Example microsystems, challenges and opportunities

Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005

Galambos, Paul C.; James, Conrad D.

A variety of fabrication techniques have been used to make microfluidic microsystems: bulk etching in silicon and glass, plastic molding and machining, and PDMS (silicone) casting. Surprisingly the most widely used method of integrated circuit (IC) fabrication (surface micromachining - SMM) has not been extensively utilized in microfluidics despite its wide use in MEMS. There are economic reasons that SMM is not often used in microfluidics; high infrastructure and start-up costs and relatively long fabrication times: and there are technical reasons; packaging difficulties, dominance of surface forces, and fluid volume scaling issues. However, there are also important technical and economic advantages for SMM microfluidics relating to large-scale batch, no-assembly fabrication, and intimate integration of mechanical, electrical, microfluidic, and nano-scale sub-systems on one chip. In our work at Sandia National Laboratories MDL (Microelectronics Development Lab) we have built on the existing MEMS SMM infrastructure to produce a variety of microfluidic microsystems. These example microsystems illustrate the challenges and opportunities associated with SMM microfluidics. In this paper we briefly discuss two SMM microfluidic microsystems (made in the SUMMiT™ and SwIFT™ processes - www.mdl.sandia.gov/micromachine ) in terms of technical challenges and unique SMM microfluidics opportunities. The two example microsystems are a DEP (dielectrophoretic) trap, and a drop ejector patterning system. Copyright © 2005 by ASME.

More Details

Quadratic finite elements and incompressible viscous flows

Computer Methods in Applied Mechanics and Engineering

Gartling, David K.; Dohrmann, Clark R.

Pressure stabilization methods are applied to higher-order velocity finite elements for application to viscous incompressible flows. Both a standard pressure stabilizing Petrov-Galerkin (PSPG) method and a new polynomial pressure projection stabilization (PPPS) method have been implemented and tested for various quadratic elements in two dimensions. A preconditioner based on relaxing the incompressibility constraint is also tested for the iterative solution of saddle point problems arising from mixed Galerkin finite element approximations to the Navier-Stokes equations. The preconditioner is demonstrated for BB stable elements with discontinuous pressure approximations in two and three dimensions.

More Details

Automated surface micro-machining mask creation from a 3D model

Microsystem Technologies

Schiek, Richard; Schmidt, Rodney C.

We have developed and implemented a method, which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micromachining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology to the model. The 3D model is first separated into bodies that are non-intersecting, made from different materials or only linked through a ground plane. Next, for each body unique vertical cross sections are located and arranged into a tree based on their topological relationship. A branch-wise search of the tree uncovers locations where deposition boundaries must lie and identifies candidate masks creating a generic mask set for the 3D model. Finally, in the last step specific process requirements are considered that may constrain the generic mask set. Constraints can include the thickness or number of deposition layers, specific ordering of masks as required by a process and type of material used in a given layer. Candidate masks are reconciled with the process constraints through a constrained optimization.

More Details

Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space

Journal of Biomechanical Engineering

Stockman, Harlan W.

The lattice Boltzmann method is used to model oscillatory flow in the spinal subarachnoid space. The effect of obstacles such as trabeculae, nerve bundles, and ligaments on fluid velocity profiles appears to be small, when the flow is averaged over the length of a vertebra. Averaged fluid flow in complex models is little different from flow in corresponding elliptical annular cavities. However, the obstacles stir the flow locally and may be more significant in studies of tracer dispersion. Copyright © 2006 by ASME.

More Details

Misorientation mapping for visualization of plastic deformation via electron back-scattered diffraction

Microscopy and Microanalysis

Brewer, L.N.; Othon, M.A.; Young, L.M.; Angeliu, T.M.

The ability to map plastic deformation around high strain gradient microstructural features is central in studying phenomena such as fatigue and stress corrosion cracking. A method for the visualization of plastic deformation in electron back-scattered diffraction (EBSD) data has been developed and is described in this article. This technique is based on mapping the intragrain misorientation in polycrystalline metals. The algorithm maps the scalar misorientation between a local minimum misorientation reference pixel and every other pixel within an individual grain. A map around the corner of a Vickers indentation in 304 stainless steel was used as a test case. Several algorithms for EBSD mapping were then applied to the deformation distributions around air fatigue and stress corrosion cracks in 304 stainless steel. Using this technique, clear visualization of a deformation zone around high strain gradient microstructural features (crack tips, indentations, etc.) is possible with standard EBSD data. © Microscopy Society of America 2006.

More Details

Robust design and model validation of nonlinear compliant micromechanisms

Journal of Microelectromechanical Systems

Wittwer, Jonathan W.; Baker, Michael S.; Howell, Larry L.

Although the use of compliance or elastic flexibility in microelectromechanical systems (MEMS) helps eliminate friction, wear, and backlash, compliant MEMS are known to be sensitive to variations in material properties and feature geometry, resulting in large uncertainties in performance. This paper proposes an approach for design stage uncertainty analysis, model validation, and robust optimization of nonlinear MEMS to account for critical process uncertainties including residual stress, layer thicknesses, edge bias, and material stiffness. A fully compliant bistable micromechanism (FCBM) is used as an example, demonstrating that the approach can be used to handle complex devices involving nonlinear finite element models. The general shape of the force-displacement curve is validated by comparing the uncertainty predictions to measurements obtained from in situ force gauges. A robust design is presented, where simulations show that the estimated force variation at the point of interest may be reduced from ±47 μN to ±3 μN. The reduced sensitivity to process variations is experimentally validated by measuring the second stable position at multiple locations on a wafer. © 2006 IEEE.

More Details

Prediction of β-strand packing interactions using the signature product

Journal of Molecular Modeling

Brown, W.M.; Martin, Shawn; Chabarek, Joseph P.; Strauss, Charlie; Faulon, Jean-Loup M.

The prediction of β-sheet topology requires the consideration of long-range interactions between β-strands that are not necessarily consecutive in sequence. Since these interactions are difficult to simulate using ab initio methods, we propose a supplementary method able to assign β-sheet topology using only sequence information. We envision using the results of our method to reduce the three-dimensional search space of ab initio methods. Our method is based on the signature molecular descriptor, which has been used previously to predict protein-protein interactions successfully, and to develop quantitative structure-activity relationships for small organic drugs and peptide inhibitors. Here, we show how the signature descriptor can be used in a Support Vector Machine to predict whether or not two β-strands will pack adjacently within a protein. We then show how these predictions can be used to order β-strands within β-sheets. Using the entire PDB database with ten-fold cross-validation, we have achieved 74.0% accuracy in packing prediction and 75.6% accuracy in the prediction of edge strands. For the case of β-strand ordering, we are able to predict the correct ordering accurately for 51.3% of the β-sheets. Furthermore, using a simple confidence metric, we can determine those sheets for which accurate predictions can be obtained. For the top 25% highest confidence predictions, we are able to achieve 95.7% accuracy in β-strand ordering. © Springer-Verlag 2005.

More Details
Results 84601–84800 of 99,299
Results 84601–84800 of 99,299