Publications

15 Results

Search results

Jump to search filters

Photosensitive polysilane thin films for write-as-needed optical devices

Proceedings of SPIE - The International Society for Optical Engineering

Simmons-Potter, K.; Potter, B.G.; Jamison, Gregory M.; Thomes, W.J.

The use of photosensitive materials for the development of integrated, refractive-index structures supporting telecom, remote sensing, and varied optical beam manipulation applications is well established. Our investigations of photosensitive phenomena in polysilanes, however, have been motivated by the desire to configure, or program, the photonic device function immediately prior to use. Such an operational mode imposes requirements on wavelength sensitivity, incident fluence and environmental conditions that are not typical of more conventional applications of photosensitive material. The present paper focuses on our efforts to understand and manipulate photosensitivity in polysilane thin films under different excitation wavelengths, local atmospheric compositions and thermal history in this context. We find that the photoresponse can be influenced through the control of such optical exposure conditions, thereby influencing the magnitude of the photoinduced refractive-index change attained.

More Details

Photoinduced refractive index change and absorption bleaching in poly(methylphenylsilane) under varied ambients

Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B

Potter, B.G.; Chandra, H.; Simmons-Potter, K.; Jamison, Gregory M.; Thomes, W.J.

Polysilane materials exhibit large photo-induced refractive index changes under low incident optical fluences, making them attractive candidates for applications in which rapid patterning of photonic device structures is desired immediately prior to their use. This agile fabrication strategy for integrated photonics inherently requires that optical exposure, and associated material response, occurs in nonlaboratory environments, motivating the study of environmental conditions on the photoinduced response of the material. The present work examines the impact of atmosphere on the photosensitive response of poly(methylphenylsilane) (PMPS) thin films in terms of both photoinduced absorption change and refractive index modification. Material was subjected to UV light exposure resonant with the lowest energy optical transition associated with the conjugated Si-Si backbone. Exposures were performed in both aerobic and anaerobic atmospheres (oxygen, air, nitrogen, and 5% H2/95% N 2). The results clearly demonstrate that the photosensitive response of this model polysilane material was dramatically affected by local environment, exhibiting a photoinduced refractive index change, when exposed under an oxygen containing atmosphere, that was twice that observed under anaerobic conditions. This effect is discussed in terms of photo-oxidation processes within the polysilane structure and in the context of the need for predictable photosensitive refractive index change in varied photoimprinting environments.

More Details

Photo-control of nanointeractions

Bell, Nelson S.; Jamison, Gregory M.; Marbury, Justin L.; Piech, Marcin P.; Thomes, William J.; Staiger, Chad S.

The manipulation of physical interactions between structural moieties on the molecular scale is a fundamental hurdle in the realization and operation of nanostructured materials and high surface area microsystem architectures. These include such nano-interaction-based phenomena as self-assembly, fluid flow, and interfacial tribology. The proposed research utilizes photosensitive molecular structures to tune such interactions reversibly. This new material strategy provides optical actuation of nano-interactions impacting behavior on both the nano- and macroscales and with potential to impact directed nanostructure formation, microfluidic rheology, and tribological control.

More Details

LDRD final report on intelligent polymers for nanodevice performance control

Jamison, Gregory M.; Loy, Douglas A.; Wheeler, David R.; Shelnutt, John A.; Carr, Martin J.; Shaltout, Raafat M.

A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

More Details

New hybrid polysilane/polysiloxane nanocomposites

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Jamison, Gregory M.

AIBN-iniliated functionalization of polyphenylsilane with allyl(ethoxy) silanes generates (elhoxysilylpropyl)polysilanes in good yield. Amorphous polysilane-polysiloxane hybrid nanocomposites can be prepared by the mild, acid-catalyzed sol-gel hydrolysis-condensation of polysilane-based precursors 2a-c at the pendant alkoxysilane residues. UV-Vis and multinuclear NMR spectroscopies establish the mention of the polysilane chromophore and attached organic residues; NMR also reflects the degree of condenstion at the siloxane silicon nuclei. The bulk morphology of the resulting dried gels can be influenced by the choice of solvent removal from the wet gel Aqueous extraction of solvent results in ponporous xerogels. while solvent removal by supercritical CO2 yields mesoporous aerogels with retention of the wet gel surface area. In hybrid materials 3a-c the polysilane chromophore is homogeneously dispersed in. and covalently bound to, a highly crosslinked siloxane matrix. The demonstrated ability to homogeneously entrain polysilanes within glass matrices holds great potential for fabricating sohisticated electronic, NLO and photoconducting devices.

More Details

LDRD final report on polyphosphaacetylenes, new hybrid conducting organic-inorganic materials

Jamison, Gregory M.

Thermal, electrochemical and transition metal mediated reactions of phosphaacetylene monomers were conducted in attempts to form novel polyphosphaacetylenes as a new class of potentially electrically conducting polymers. Molecular modeling was used to simulate the molecular conformations of optimized, isolated oligomers to identify the proper monomeric repeat units for highly conjugated molecules. Electrodeposition of suitable monomers led to low molecular weight oligomers. Thermal polymerization of phosphaacetylene monomers bearing aromatic substituents ed to the formation of polyhedral cage oligomers. Under metathesis polymerization conditions the phosphaacetylene monomers form unique complexes via an unprecedented sequence of intermediates which suggest that metathesis to linear oligomers is achievable. Conductivity measurements on electrodeposited oligomers indicate modest electrical conductivity.

More Details

Alkylene-bridged polygerm- and polygermsilsesqui-oxanes: New hybrid organic-inorganic materials

Jamison, Gregory M.

Alkylene-bridge polygerm- and polygermsilsequioxanes have been formed by hydrolysis-condensation of their corresponding (EtO){sub 3}M(CH{sub 2}){sub n}Ge(OEt){sub 3} monomers under HCl- and NEt{sub 3}-catalyzed conditions in ethanol. Solid state {sup 13}C and {sup 29}Si NMR indicate the retention of the alkylene bridging moiety during polymerization. The resulting aerogels are mesoporous materials with high surface areas. Incorporation of the short ethylene bridging unit results in higher surface areas than when heylene bridges are present. The porous nature of hexylene-bridged hybrid network [Si(CH{sub 2}){sub 6}GeO{sub 3}]{sub n} appears insensitive to the acidic or basic nature of the catalyst employed in it formation, in contrast to its polysilsesquioxane counterpart. Work is underway to determine the origin of porosity in these materials, and to characterize xerogel materials generated from these monomers.

More Details
15 Results
15 Results