Publications

Results 81801–82000 of 96,771

Search results

Jump to search filters

Hydrodynamic effects on coalescence

Grillet, Anne M.; Brooks, Carlton F.; De Boer, Maarten P.; Bourdon, Christopher B.; Gorby, Allen D.

The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.

More Details

A tunable electrochromic fabry-perot filter for adaptive optics applications

Kammler, Daniel K.; Ambrosini, Andrea A.; Yelton, William G.; Verley, Jason V.; Heller, Edwin J.; Sweatt, W.C.

The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set, the severe absorption associated with the refractive index change suggests that incorporating EC materials into phase correcting spatial light modulators (SLMS) would allow for only negligible phase correction before transmission losses became too severe. However, we would like to emphasize that other EC materials may allow sufficient phase correction with limited absorption, which could make this approach attractive.

More Details

A Risk-Based System Analysis Framework for Geological Carbon Sequestration

Kobos, Peter H.

The purpose of this project was to characterize existing carbon capture and sequestration technologies at a high level, develop an analytical framework to help assess the technologies, and implement the framework in a system dynamics model. The first year of this project succeeded in characterizing existing technologies to help focus the analysis on power plants. The assessment also helped determine which technologies are largely accepted by the carbon capture research community as relatively proven technologies, discuss the salient performance metrics, and assess the associated economics. With this information, an analytical framework was developed to assess the technologies from a systems view perspective. With this framework, the Carbon Sequestration and Risk Model (CSR) was developed to assess performance and economic risk issues as they relate to global atmospheric CO2 concentration goals and single plant scale projects to characterize the economics of these systems.

More Details

1- and 2-frame monochromatic x-ray imaging of NIF-like capsules on Z and future higher-energy higher-resolution 2- & 4-frame x-radiography plans for ZR

Bennett, Guy R.; Campbell, David V.; Claus, Liam D.; Foresi, James S.; Johnson, Drew J.; Jones, Michael J.; Keller, Keith L.; Leifeste, Gordon T.; McPherson, Leroy A.; Mulville, Thomas D.; Neely, Kelly A.; Sinars, Daniel S.; Herrmann, Mark H.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Simpson, Walter W.; Speas, Christopher S.; Wenger, D.F.; Smith, Ian C.; Cuneo, M.E.; Adams, Richard G.; Atherton, B.W.; Barnard, Wilson J.; Beutler, David E.; Burr, Robert A.

Abstract not provided.

Accelerating DSMC data extraction

Piekos, Edward S.; Gallis, Michail A.

In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

More Details

Studies of the laser-induced fluorescence of explosives and explosive compositions

Schmitt, Randal L.; Thorne, Lawrence R.; Hargis, Philip J.; Parmeter, John E.

Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

More Details

Analysis of electromagnetic scattering by nearly periodic structures: an LDRD report

Jorgenson, Roy E.; Basilio, Lorena I.; Johnson, William Arthur.; Warne, Larry K.; Peters, D.W.

In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.

More Details

Updating time-to-failure distributions based on field observations and sensor data

Briand, Daniel B.; Lowder, Kelly S.; Shirah, Donald N.

Enterprise level logistics and prognostics and health management (PHM) modeling efforts use reliability focused failure distributions to characterize the probability of failure over the lifetime of a component. This research characterized the Sandia National Laboratories developed combined lifecycle (CMBL) distribution and explored methods for updating this distribution as systems age and new failure data becomes available. The initial results obtained in applying a Bayesian sequential updating methodology to the CMBL distribution shows promise. This research also resulted in the development of a closed-form full life cycle (CFLC) distribution similar to the CMBL distribution but with slightly different, yet commonly recognized, input parameters. Further research is warranted to provide additional theoretical validation of the distributions, complete the updating methods for the CMBL distribution, evaluate a Bayesian updating methodology for the CFLC distribution, and determine which updating methods would be most appropriate for enterprise level logistics and PHM modeling.

More Details

A miniaturized mW thermoelectric generator for nw objectives: continuous, autonomous, reliable power for decades

Whalen, Scott A.; Moorman, Matthew W.; Siegal, Michael P.; Aselage, Terrence L.; Frederick, Scott K.

We have built and tested a miniaturized, thermoelectric power source that can provide in excess of 450 {micro}W of power in a system size of 4.3cc, for a power density of 107 {micro}W/cc, which is denser than any system of this size previously reported. The system operates on 150mW of thermal input, which for this system was simulated with a resistive heater, but in application would be provided by a 0.4g source of {sup 238}Pu located at the center of the device. Output power from this device, while optimized for efficiency, was not optimized for form of the power output, and so the maximum power was delivered at only 41mV. An upconverter to 2.7V was developed concurrently with the power source to bring the voltage up to a usable level for microelectronics.

More Details

Z-inertial fusion energy: power plant final report FY 2006

Olson, Craig L.; McConnell, Paul E.; Rochau, Gary E.; Vigil, Virginia L.; Cipiti, Benjamin B.; Rodriguez, Salvador B.; Morrow, Charles W.; Farnum, Cathy O.; Smith, James D.; Durbin, S.G.; Aragon, Dannelle S.

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

More Details

Modeling, simulation & optimization of the landing craft air cushion fleet readiness

Engi, Dennis E.

The Landing Craft Air Cushion is a high-speed, over-the-beach, fully amphibious landing craft capable of carrying a 60-75 ton payload. The LCAC fleet can serve to transport weapons systems, equipment, cargo and personnel from ship to shore and across the beach. This transport system is an integral part of our military arsenal and, as such, its readiness is an important consideration for our national security. Further, the best way to expend financial resources that have been allocated to maintain this fleet is a critical Issue. There is a clear coupling between the measure of Fleet Readiness as defined by the customer for this project and the information that is provided by Sandia's ProOpta methodology. Further, there is a richness in the data that provides even more value to the analyst. This report provides an analytic framework for understanding the connection between Fleet Readiness and the output provided by Sandia's ProOpta software. Further, this report highlights valuable information that can also be made available using the ProOpta output and concepts from basic probability theory. Finally, enabling assumptions along with areas that warrant consideration for further study are identified.

More Details

A low-power pressure-and temperature-programmed separation system for a micro gas chromatograph

Robinson, Alex L.

This thesis presents the theory, design, fabrication and testing of the microvalves and columns necessary in a pressure- and temperature-programmed micro gas chromatograph ({micro}GC). Two microcolumn designs are investigated: a bonded Si-glass column having a rectangular cross section and a vapor-deposited silicon oxynitride (Sion) column having a roughly circular cross section. Both microcolumns contain integrated heaters and sensors for rapid, controlled heating. The 3.2 cm x 3.2 cm, 3 m-long silicon-glass column, coated with a non-polar polydimethylsiloxane (PDMS) stationary phase, separates 30 volatile organic compounds (VOCs) in less than 6 min. This is the most efficient micromachined column reported to date, producing greater than 4000 plates/m. The 2.7 mm x 1.4 mm Sion column eliminates the glass sealing plate and silicon substrate using deposited dielectrics and is the lowest power and fastest GC column reported to date; it requires only 11 mW to raise the column temperature by 100 C and has a response time of 11s and natural temperature ramp rate of 580 C/min. A 1 m-long PDMS-coated Sion microcolumn separates 10 VOCs in 52s. A system-based design approach was used for both columns.

More Details

Benchmark experiments/calculations of neutron environments in the annular core research reactor

Journal of ASTM International

Depriest, Kendall D.

Benchmark experiments using spherical test objects were performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor. The experiments were performed with 10.16 cm and 17.78 cm diameter aluminum (Al6061) and high-density polyethylene spheres that were essentially solid with cavities scrolled out along the equator to allow the insertion of activation foils and/or sulfur pellets. The neutron monitor foils were selected to cover a wide range of reaction energies. The reactor environments were modeled in detail using Monte Carlo N-Particle eXtended (MCNPX). The experimental results were compared to the Monte Carlo calculations of the reaction rates of each of the foils at various depths in the spheres produced by MCNPX. The comparison includes a complete treatment of the uncertainties. Copyright © 2006 by ASTM International.

More Details

Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems

Computer Methods in Applied Mechanics and Engineering

Bartlett, Roscoe B.; Heinkenschloss, Matthias; Ridzal, Denis; van Bloemen Waanders, Bart G.

We present an optimization-level domain decomposition (DD) preconditioner for the solution of advection dominated elliptic linear-quadratic optimal control problems, which arise in many science and engineering applications. The DD preconditioner is based on a decomposition of the optimality conditions for the elliptic linear-quadratic optimal control problem into smaller subdomain optimality conditions with Dirichlet boundary conditions for the states and the adjoints on the subdomain interfaces. These subdomain optimality conditions are coupled through Robin transmission conditions for the states and the adjoints. The parameters in the Robin transmission condition depend on the advection. This decomposition leads to a Schur complement system in which the unknowns are the state and adjoint variables on the subdomain interfaces. The Schur complement operator is the sum of subdomain Schur complement operators, the application of which is shown to correspond to the solution of subdomain optimal control problems, which are essentially smaller copies of the original optimal control problem. We show that, under suitable conditions, the application of the inverse of the subdomain Schur complement operators requires the solution of a subdomain elliptic linear-quadratic optimal control problem with Robin boundary conditions for the state. Numerical tests for problems with distributed and with boundary control show that the dependence of the preconditioners on mesh size and subdomain size is comparable to its counterpart applied to a single advection dominated equation. These tests also show that the preconditioners are insensitive to the size of the control regularization parameter.

More Details

Selectivities for binary mixtures of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by Grand Canonical Monte Carlo techniques

Fluid Phase Equilibria

Gallo, Marco; Nenoff, T.M.; Mitchell, Martha C.

In this study the separation capabilities of silicalite and the titanosilicate molecular sieve ETS-10 for binary mixtures of hydrogen/methane and hydrogen/carbon dioxide were evaluated by equilibrium molecular simulation techniques. This is the first molecular simulation study that presents mixture adsorption isotherms of these components in silicalite and ETS-10, and determines selectivities based on the simulation results. Grand Canonical Monte Carlo (GCMC) simulations were carried out for pure components and binary mixtures for hydrogen/carbon dioxide and hydrogen/methane at 298 K to determine pure and mixture adsorption isotherms. The pure and mixture adsorption isotherms were calculated up to pressures of approximately 2000 bar. The results of this study indicate that the separation of hydrogen from methane or from carbon dioxide in silicalite would be successful, since hydrogen in a 50% bulk mixture does not adsorb unless the pressure is very high, on the order of 500 bar. In contrast, in ETS-10, hydrogen in a 50% bulk mixture adsorbs at a pressure near 10 bar. Simulations of adsorption in ETS-10 show at low, intermediate and high pressures a higher selectivity for the separation of carbon dioxide from hydrogen than the separation of methane from hydrogen. Simulations of adsorption in silicalite show a higher selectivity for the separation of carbon dioxide from hydrogen than the methane/hydrogen separation at high pressures only. Analysis of isosteric heat of adsorption information indicates that silicalite is energetically homogeneous with the adsorbates. In contrast, ETS-10 has energetic heterogeneity, as shown by the decrease of the heat of adsorption with increasing loading. © 2006 Elsevier B.V. All rights reserved.

More Details

Measurement of temperature-dependent defect diffusion in proton-irradiated GaN(Mg, H)

Journal of Applied Physics

Fleming, Robert M.; Myers, S.M.

Deuterated p-type GaN(Mg, 2H) films were irradiated at room temperature with 1 MeV protons to create native point defects with a concentration approximately equal to the Mg doping (5 × 10 19 cm -3). The samples were then annealed isothermally at a succession of temperatures while monitoring the infrared absorption due to the H local mode of the MgH defect. As the samples were annealed, the MgH absorption signal decreased and a new mode at slightly higher frequency appeared, which has been associated with the approach of a mobile nitrogen interstitial. We used the time dependence of the MgH absorption to obtain a diffusion barrier of the nitrogen interstitial in p-type GaN of 1.99 eV. This is in good agreement with theoretical calculations of nitrogen interstitial motion in GaN. © 2000 American Institute of Physics.

More Details

Measures of agreement between computation and experiment: Validation metrics

Journal of Computational Physics

Oberkampf, William L.; Barone, Matthew F.

With the increasing role of computational modeling in engineering design, performance estimation, and safety assessment, improved methods are needed for comparing computational results and experimental measurements. Traditional methods of graphically comparing computational and experimental results, though valuable, are essentially qualitative. Computable measures are needed that can quantitatively compare computational and experimental results over a range of input, or control, variables to sharpen assessment of computational accuracy. This type of measure has been recently referred to as a validation metric. We discuss various features that we believe should be incorporated in a validation metric, as well as features that we believe should be excluded. We develop a new validation metric that is based on the statistical concept of confidence intervals. Using this fundamental concept, we construct two specific metrics: one that requires interpolation of experimental data and one that requires regression (curve fitting) of experimental data. We apply the metrics to three example problems: thermal decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and compressibility effects on the growth rate of a turbulent free-shear layer. We discuss how the present metrics are easily interpretable for assessing computational model accuracy, as well as the impact of experimental measurement uncertainty on the accuracy assessment.

More Details

Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application

Glover, Steven F.; Higgins, Matthew B.; Lockner, Thomas L.; Schneider, Larry X.; Pena, Gary P.

Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

More Details

Separation of p-xylene from multicomponent vapor mixtures using tubular MFI zeolite mmbranes

Journal of Membrane Science

Gu, Xuehong; Dong, Junhang; Nenoff, T.M.; Ozokwelu, Dickson E.

MFI zeolite membranes have been synthesized on tubular α-alumina substrates to investigate the separation of p-xylene (PX) from m-xylene (MX) and o-xylene (OX) in binary, ternary, and simulated multicomponent mixtures in wide ranges of feed pressure and operating temperature. The results demonstrate that separation of PX from MX and OX through the MFI membranes relies primarily on shape-selectivity when the xylene sorption level in the zeolite is sufficiently low. For an eight-component mixture containing hydrogen, methane, benzene, toluene, ethylbenzene, PX, MX, and OX, a PX/(MX + OX) selectivity of 7.71 with a PX flux of 6.8 × 10-6 mol/(m2 s) was obtained at 250 °C and atmospheric feed pressure. The addition of a small quantity of nonane to the multicomponent mixture caused drastic decreases in the fluxes of aromatic components and the PX separation factor because of the preferential adsorption of nonane in the zeolite channels. The nanoscale intercrystalline pores also caused serious decline in the PX separation factor. A new method of online membrane modification by carbonization of 1,3,5-triisopropylbenzene in the feed stream was found to be effective for reducing the intercrystalline pores and improving the PX separation. © 2006 Elsevier B.V. All rights reserved.

More Details

Modeling noncohesive sediment transport using multiple sediment size classes

Journal of Coastal Research

James, Scott C.; Shrestha, Parmeshwar L.; Roberts, Jesse D.

Contemporary three-dimensional numerical sediment transport models are often computationally expensive because of their complexity and thus a compromise must be struck between accurately modeling sediment transport and the number of effective sediment grain (particle) size classes to represent in such a model. The Environmental Fluid Dynamics Code (EFDC) was used to simulate the experimental results of previous researchers who investigated sediment erosion and gradation around a 180° bend subject to transient flow. The EFDC model was first calibrated using the eight distinct particle size classes reported in the physical experiment to find the best erosion formulations to use. Once the best erosion formulations and parameters were ascertained, numerical simulations were carried out for each experimental run using a single effective particle size. Four techniques for evaluating the effective particle size were investigated. Each procedure yields comparable effective particle sizes within a factor of 1.5 of the others. Model results indicate that particle size as determined by the weighted critical shear velocity most faithfully reproduced the experimental results for erosion and deposition depths. Subsequently, model runs were conducted with different numbers of effective particle size classes to determine the optimal number that yields an accurate estimate for noncohesive sediment transport. Optimal, herein, means that numerical model results are reasonably representative of the experimental data with the fewest effective particle size classes used, thereby maximizing computational efficiency. Although modeling with more size classes can be equally accurate, results from this study indicate that using three effective particle size classes to estimate the distribution of sediment sizes is optimum.

More Details

The structure of random foam

Advanced Engineering Materials

Kraynik, Andrew M.

Surface Evoluer models of soap froth with a wide range of cell-size distributions are used to investigate random cellular morphology. Geometric properties of foams and foam cells are analyzed. A simple, accurate theory relates the total suface area of foam to the cell-size distribution. The total surface area is approximately equal to the total edge length when both quantities are scaled by average cell volume. Voronoi structures are significantly different from foams, which raises questions over their use for predicting structure-property relationships. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

More Details

Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs)

Journal of Colloid and Interface Science

Wang, Yifeng; Gao, Huizhen

Layered double hydroxides (LDHs) have shown great promise as anion getters. In this paper, we demonstrate that the sorption capability of a LDH for a specific oxyanion can be greatly increased by appropriately manipulating material composition and structure. We have synthesized a large set of LDH materials with various combinations of metal cations, interlayer anions, and molar ratios of divalent cation M(II) to trivalent cation M(III). The synthesized materials have then been tested systematically for their sorption capabilities for pertechnetate (TcO-4). It is discovered that for a given interlayer anion (either CO2-3 or NO-3) the Ni-Al LDH with a Ni/Al ratio of 3:1 exhibits the highest sorption capability among all the materials tested. The sorption of TcO-4 on M(II)-M(III)-CO3 LDHs may be dominated by the edge sites of LDH layers and correlated with the basal spacing d003 of the materials, which increases with the decreasing radii of both divalent and trivalent cations. The sorption reaches its maximum when the layer spacing is just large enough for a pertechnetate anion to fit into a cage space among three adjacent octahedra of metal hydroxides at the edge. Furthermore, the sorption is found to increase with the crystallinity of the materials. For a given combination of metal cations and an interlayer anion, the best crystalline LDH material is obtained generally with a M(II)/M(III) ratio of 3:1. Synthesis with readily exchangeable nitrate as an interlayer anion greatly increases the sorption capability of a LDH material for pertechnetate. The work reported here will help to establish a general structure-property relationship for the related layered materials. © 2006 Elsevier Inc. All rights reserved.

More Details

Preliminary study on hydrogeology in tectonically active areas

Arnold, Bill W.; Lappin, Allen R.; Gettemy, Glen L.; Meier, Diane K.; Lee, Moo Y.; Jensen, Richard P.

This report represents the final product of a background literature review conducted for the Nuclear Waste Management Organization of Japan (NUMO) by Sandia National Laboratories, Albuquerque, New Mexico, USA. Internationally, research of hydrological and transport processes in the context of high level waste (HLW) repository performance, has been extensive. However, most of these studies have been conducted for sites that are within tectonically stable regions. Therefore, in support of NUMO's goal of selecting a site for a HLW repository, this literature review has been conducted to assess the applicability of the output from some of these studies to the geological environment in Japan. Specifically, this review consists of two main tasks. The first was to review the major documents of the main HLW repository programs around the world to identify the most important hydrologic and transport parameters and processes relevant in each of these programs. The review was to assess the relative importance of processes and measured parameters to site characterization by interpretation of existing sensitivity analyses and expert judgment in these documents. The second task was to convene a workshop to discuss the findings of Task 1 and to prioritize hydrologic and transport parameters in the context of the geology of Japan. This report details the results and conclusions of both of these Tasks.

More Details

Molten Salt-Based Growth of Bulk GaN and InN for Substrates

Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

An atmospheric pressure approach to growth of bulk group III-nitrides is outlined. Native III-nitride substrates for optoelectronic and high power, high frequency electronics are desirable to enhance performance and reliability of these devices; currently, these materials are available in research quantities only for GaN, and are unavailable in the case of InN. The thermodynamics and kinetics of the reactions associated with traditional crystal growth techniques place these activities on the extreme edges of experimental physics. The technique described herein relies on the production of the nitride precursor (N3-) by chemical and/or electrochemical methods in a molten halide salt. This nitride ion is then reacted with group III metals in such a manner as to form the bulk nitride material. The work performed during the period of funding (July 2004-September 2005) focused on the initial measurement of the solubility of GaN in molten LiCl as a function of temperature, the construction of electrochemical cells, the modification of a commercial glove box (required for handling very hygroscopic LiCl), and on securing intellectual property for the technique.

More Details

Thermal Aging of the Polyurethane Foam for the H1616 Shipping Container

Stavig, Mark E.

A polyurethane foam used in the H1616 shipping container provides impact energy absorption and fire protection in hypothetical accident conditions. This study was undertaken to determine the estimated lifetime of the foam as a function of temperature. The foams were aged at temperatures ranging from 65°C to 95°C for periods of time ranging from 6 months to 6 years. Both destructive and nondestructive Dynamic Mechanical Analyses (DMA) were used to evaluate the performance of the foams as a function of time and temperature. In addition, color changes and weight loss were recorded. Three properties of the foam show a definite trend with aging time: weight loss, nondestructive G’ (measured at 100°C), and glassy G’. A time temperature superposition analysis shows a reasonable trend with temperature for both the weight loss and glassy G’. The acceleration factors for weight loss and glassy G’ did not correlate with each other, however. A prediction of the behavior of G’ as a function of aging time at 25°C was derived from an extrapolated value of the acceleration factor. In addition to providing a quantitative estimation of the aging process, the curve also provides a description of the qualitative features of the aging process. First, the aging process appears to proceed smoothly as a function of aging time. There are no discontinuities or sharp breaks in the glassy G’ as a function of aging time at any of the temperatures. Second, the rate of change of the glassy G’ appears to decrease as the aging time increases.

More Details

Methodology assessment and recommendations for the Mars science laboratory launch safety analysis

Bessette, Gregory B.; Lipinski, Ronald J.; Bixler, Nathan E.; Hewson, John C.; Robinson, David G.; Potter, Donald L.; Atcitty, Christopher B.; Dodson, Brian W.; Maclean, Heather J.; Sturgis, Beverly R.

The Department of Energy has assigned to Sandia National Laboratories the responsibility of producing a Safety Analysis Report (SAR) for the plutonium-dioxide fueled Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) proposed to be used in the Mars Science Laboratory (MSL) mission. The National Aeronautic and Space Administration (NASA) is anticipating a launch in fall of 2009, and the SAR will play a critical role in the launch approval process. As in past safety evaluations of MMRTG missions, a wide range of potential accident conditions differing widely in probability and seventy must be considered, and the resulting risk to the public will be presented in the form of probability distribution functions of health effects in terms of latent cancer fatalities. The basic descriptions of accident cases will be provided by NASA in the MSL SAR Databook for the mission, and on the basis of these descriptions, Sandia will apply a variety of sophisticated computational simulation tools to evaluate the potential release of plutonium dioxide, its transport to human populations, and the consequent health effects. The first step in carrying out this project is to evaluate the existing computational analysis tools (computer codes) for suitability to the analysis and, when appropriate, to identify areas where modifications or improvements are warranted. The overall calculation of health risks can be divided into three levels of analysis. Level A involves detailed simulations of the interactions of the MMRTG or its components with the broad range of insults (e.g., shrapnel, blast waves, fires) posed by the various accident environments. There are a number of candidate codes for this level; they are typically high resolution computational simulation tools that capture details of each type of interaction and that can predict damage and plutonium dioxide release for a range of choices of controlling parameters. Level B utilizes these detailed results to study many thousands of possible event sequences and to build up a statistical representation of the releases for each accident case. A code to carry out this process will have to be developed or adapted from previous MMRTG missions. Finally, Level C translates the release (or ''source term'') information from Level B into public risk by applying models for atmospheric transport and the health consequences of exposure to the released plutonium dioxide. A number of candidate codes for this level of analysis are available. This report surveys the range of available codes and tools for each of these levels and makes recommendations for which choices are best for the MSL mission. It also identities areas where improvements to the codes are needed. In some cases a second tier of codes may be identified to provide supporting or clarifying insight about particular issues. The main focus of the methodology assessment is to identify a suite of computational tools that can produce a high quality SAR that can be successfully reviewed by external bodies (such as the Interagency Nuclear Safety Review Panel) on the schedule established by NASA and DOE.

More Details

Ideas underlying quantification of margins and uncertainties(QMU): a white paper

Pilch, Martin P.; Trucano, Timothy G.

This report describes key ideas underlying the application of Quantification of Margins and Uncertainties (QMU) to nuclear weapons stockpile lifecycle decisions at Sandia National Laboratories. While QMU is a broad process and methodology for generating critical technical information to be used in stockpile management, this paper emphasizes one component, which is information produced by computational modeling and simulation. In particular, we discuss the key principles of developing QMU information in the form of Best Estimate Plus Uncertainty, the need to separate aleatory and epistemic uncertainty in QMU, and the risk-informed decision making that is best suited for decisive application of QMU. The paper is written at a high level, but provides a systematic bibliography of useful papers for the interested reader to deepen their understanding of these ideas.

More Details

SAR ambiguous range suppression

Doerry, Armin

Pulsed Radar systems suffer range ambiguities, that is, echoes from pulses transmitted at different times arrive at the receiver simultaneously. Conventional mitigation techniques are not always adequate. However, pulse modulation schemes exist that allow separation of ambiguous ranges in Doppler space, allowing easy filtering of problematic ambiguous ranges.

More Details

Features of West Hackberry SPR Caverns and Internal Structure Of the Salt Dome

Munson, Darrell E.

The intent of this report is to examine the internal structure of the West Hackberry salt dome utilizing the information from the geometric configuration of the internal cavern surfaces obtained from graphical representations of sonar survey data. In a general sense, the caverns of West Hackberry are remarkable in the symmetry of their shapes. There are only rather moderate deviations from what would be considered an ideal cylindrical solution mining geometry in these caverns. This finding is in marked contrast to the directional solutioning found in the elliptical cross sectioned, sometimes winged, caverns of Big Hill. None of the persistent lineaments prevalent in Big Hill caverns are evident in West Hackberry caverns. Irregularities of the West Hackberry caverns are restricted to preferential solution formed pits and protuberances with moderate dimensions. In fact, the principal characteristic of West Hackberry caverns is the often large sections of smooth and cylindrical cavern wall. Differences in the cavern characteristics between West Hackberry and Big Hill suggest that the former dome is quite homogeneous, while the latter still retains strong remnants of the interbeds of the original bedded Louann salt. One possible explanation is that the source of the two domes, while both from the Louann mother salt, differs. While the source of the Big Hill dome is directly from the mother salt bed, it appears that the West Hackberry arises from a laterally extruded sill of the mother salt. Consequently, the amount of deformation, and hence, mixing of the salt and interbed material in the extruded sill is significantly greater than would be the case for the directly formed diapir. In West Hackberry, remnants of interbeds apparently no longer exist. An important aspect of the construction of the West Hackberry caverns is the evidence of an attempt to use a uniform solutioning construction practice. This uniformity involved the utilization of single well solutioning and the consistent physical location of the inlet/outlet tubing in each solutioning stage, although the process did evolve with time as would be expected in a large construction project. In this study of the construction of the West Hackberry caverns, it was possible to examine the apparent effects of flow rate (solutioning rate) and salt removal quantities during each of the solutioning stages of construction. Interestingly, there appeared to be no real influence of these factors on the details of the cavern characteristics. Any of the flow rates or removal quantities could produce significant irregularities at discrete cavern wall locations, whether or not these irregularities influence the cavern behavior remains unclear. It seems that subsequent solutioning stages could either remove irregularities from earlier stages or generate irregularities of their own. In the study, no apparent influence of the material factors of creep resistance or impurity content of the salt could be found. As has been previously speculated from the earlier study of Big Hill caverns, some irregularities of the cavern wall are thought to be the formation sites of potential salt falls, this thought pertains to the West Hackberry caverns, as well. Considering the extent of the West Hackberry cavern facility, the relative uniformity of the solution mined caverns throughout the facility is impressive. This uniformity is certainly the result of homogeneity of the salt dome, and the uniformity of the solutioning practice in these single well caverns.

More Details

Accelerated aging of solid lubricants for the W76-1 TSL : effects of polymer outgassing

Dugger, Michael T.; Huffman, Elizabeth M.; Wallace, William O.

The behavior of MoS{sub 2} lubricants intended for the W76-1 TSL was evaluated after 17 and 82 thermal cycles, each lasting seven days and including a low temperature of -35 C and a high temperature of 93 C, in a sealed container containing organic materials. The MoS{sub 2} was applied by tumbling with MoS{sub 2} powder and steel pins (harperized), or by spraying with a resin binder (AS Mix). Surface composition measurements indicated an uptake of carbon and silicon on the lubricant surfaces after aging. Oxidation of the MoS{sub 2} on harperized coupons, where enough MoS{sub 2} was present at the surface to result in significant Mo and S concentrations, was found to be minimal for the thermal cycles in an atmosphere of primarily nitrogen. Bare steel surfaces showed a reduction in friction for exposed coupons compared to control coupons stored in nitrogen, at least for the initial cycles of sliding until the adsorbed contaminants were worn away. Lubricated surfaces showed no more than a ten percent increase in steady-state friction coefficient after exposure. Initial coefficient of friction was up to 250 percent higher than steady-state for AS Mix films on H950 coupons after 82 thermal cycles. However, the friction coefficient exhibited by lubricated coupons was never greater than 0.25, and more often less than 0.15, even after the accelerated aging exposures.

More Details

Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report

Siegel, Malcolm D.; McConnell, Paul E.; Everett, Randy L.

The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

More Details

ChISELS 1.0: theory and user manual :a theoretical modeler of deposition and etch processes in microsystems fabrication

Musson, Lawrence M.; Schmidt, Rodney C.; Ho, Pauline H.; Plimpton, Steven J.

Chemically Induced Surface Evolution with Level-Sets--ChISELS--is a parallel code for modeling 2D and 3D material depositions and etches at feature scales on patterned wafers at low pressures. Designed for efficient use on a variety of computer architectures ranging from single-processor workstations to advanced massively parallel computers running MPI, ChISELS is a platform on which to build and improve upon previous feature-scale modeling tools while taking advantage of the most recent advances in load balancing and scalable solution algorithms. Evolving interfaces are represented using the level-set method and the evolution equations time integrated using a Semi-Lagrangian approach [1]. The computational meshes used are quad-trees (2D) and oct-trees (3D), constructed such that grid refinement is localized to regions near the surface interfaces. As the interface evolves, the mesh is dynamically reconstructed as needed for the grid to remain fine only around the interface. For parallel computation, a domain decomposition scheme with dynamic load balancing is used to distribute the computational work across processors. A ballistic transport model is employed to solve for the fluxes incident on each of the surface elements. Surface chemistry is computed by either coupling to the CHEMKIN software [2] or by providing user defined subroutines. This report describes the theoretical underpinnings, methods, and practical use instruction of the ChISELS 1.0 computer code.

More Details

The Development of a Roof Integrated Solar Hot Water System

Menicucci, David F.; Moss, Timothy A.

The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

More Details

Reliability of dynamic systems under limited information

Field, Richard V.

A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

More Details
Results 81801–82000 of 96,771
Results 81801–82000 of 96,771