New Videoconferencing Capabilities on Classified Networks
Abstract not provided.
Abstract not provided.
Natural and man-made degraded visual environments pose major threats to national security. The random scattering and absorption of light by tiny particles suspended in the air reduces situational awareness and causes unacceptable down-time for critical systems and operations. To improve the situation, we have developed several approaches to interpret the information contained within scattered light to enhance sensing and imaging in scattering media. These approaches were tested at the Sandia National Laboratory Fog Chamber facility and with tabletop fog chambers. Computationally efficient light transport models were developed and leveraged for computational sensing. The models are based on a weak angular dependence approximation to the Boltzmann or radiative transfer equation that appears to be applicable in both the moderate and highly scattering regimes. After the new model was experimentally validated, statistical approaches for detection, localization, and imaging of objects hidden in fog were developed and demonstrated. A binary hypothesis test and the Neyman-Pearson lemma provided the highest theoretically possible probability of detection for a specified false alarm rate and signal-to-noise ratio. Maximum likelihood estimation allowed estimation of the fog optical properties as well as the position, size, and reflection coefficient of an object in fog. A computational dehazing approach was implemented to reduce the effects of scatter on images, making object features more readily discernible. We have developed, characterized, and deployed a new Tabletop Fog Chamber capable of repeatably generating multiple unique fog-analogues for optical testing in degraded visual environments. We characterized this chamber using both optical and microphysical techniques. In doing so we have explored the ability of droplet nucleation theory to describe the aerosols generated within the chamber, as well as Mie scattering theory to describe the attenuation of light by said aerosols, and correlated the aerosol microphysics to optical properties such as transmission and meteorological optical range (MOR). This chamber has proved highly valuable and has supported multiple efforts inclusive to and exclusive of this LDRD project to test optics in degraded visual environments. Circularly polarized light has been found to maintain its polarization state better than linearly polarized light when propagating through fog. This was demonstrated experimentally in both the visible and short-wave infrared (SWIR) by imaging targets made of different commercially available retroreflective films. It was found that active circularly polarized imaging can increase contrast and range compared to linearly polarized imaging. We have completed an initial investigation of the capability for machine learning methods to reduce the effects of light scattering when imaging through fog. Previously acquired experimental long-wave images were used to train an autoencoder denoising architecture. Overfitting was found to be a problem because of lack of variability in the object type in this data set. The lessons learned were used to collect a well labeled dataset with much more variability using the Tabletop Fog Chamber that will be available for future studies. We have developed several new sensing methods using speckle intensity correlations. First, the ability to image moving objects in fog was shown, establishing that our unique speckle imaging method can be implemented in dynamic scattering media. Second, the speckle decorrelation over time was found to be sensitive to fog composition, implying extensions to fog characterization. Third, the ability to distinguish macroscopically identical objects on a far-subwavelength scale was demonstrated, suggesting numerous applications ranging from nanoscale defect detection to security. Fourth, we have shown the capability to simultaneously image and localize hidden objects, allowing the speckle imaging method to be effective without prior object positional information. Finally, an interferometric effect was presented that illustrates a new approach for analyzing speckle intensity correlations that may lead to more effective ways to localize and image moving objects. All of these results represent significant developments that challenge the limits of the application of speckle imaging and open important application spaces. A theory was developed and simulations were performed to assess the potential transverse resolution benefit of relative motion in structured illumination for radar systems. Results for a simplified radar system model indicate that significant resolution benefits are possible using data from scanning a structured beam over the target, with the use of appropriate signal processing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A collection of x-ray computed tomography scans of candy.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The purpose and scope of the viga span tables project for Rachel Wood Consulting (RWC) is focused on producing tabulated beam span tables for three species of wood vigas commonly used in New Mexico to allow producers, designers and builders to incorporate vigas into their building designs in a prescriptive manner similar to the span tables for sawn lumber incorporated into the International Residential Code (IRC) or the International Log Builders Association (ILBA) publication. The information provided in this report and the associated viga span tables also attempts to address and clarify questions raised by RWC during their review of the 2018 Los Alamos National Laboratory (LANL) New Mexico Small Business Assistance (NMSBA) program report by August Mosimann pertaining to span lengths, loading, deflection calculations, and log grading certification prior to submitting the span tables to the Construction Industries Division (CID) of New Mexico.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
A zero-dimensional magnetic implosion model with a coupled equivalent circuit for the description of an imploding nested wire array or gas puff is presented. Circuit model results have been compared with data from imploding stainless steel wire arrays, and good agreement has been found. The total energy coupled to the load, E j × B, has been applied to a simple semi-analytic K-shell yield model, and excellent agreement with previously reported K-shell yields across all wire array and gas puff platforms is seen. Trade space studies in implosion radius and mass have found that most platforms operate near the predicted maximum yield. In some cases, the K-shell yield may be increased by increasing the mass or radius of the imploding array or gas puff.
Abstract not provided.
Abstract not provided.
New approaches to preventing and treating infections, particularly of the respiratory tract, are needed. One promising strategy is to reconfigure microbial communities (microbiomes) within the host to improve defense against pathogens. Probiotics and prebiotics for gastrointestinal (GI) infections offer a template for success. We sought to develop comparable countermeasures for respiratory infections. First, we characterized interactions between the airway microbiome and a biodefense-related respiratory pathogen (Burkholderia thailandensis; Bt), using a mouse model of infection. Then, we recovered microbiome constituents from the airway and assessed their ability to re-colonize the airway and protect against respiratory Bt infection. We found that microbiome constituents belonging to Bacillus and related genuses frequently displayed colonization and anti-Bt activity. Comparative growth requirement profiling of these Bacillus strains vs Bt enabled identification of candidate prebiotics. This work serves as proof of concept for airway probiotics, as well as a strong foundation for development of airway prebiotics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Recent efforts at Sandia such as DataSEA are creating search engines that enable analysts to query the institution’s massive archive of simulation and experiment data. The benefit of this work is that analysts will be able to retrieve all historical information about a system component that the institution has amassed over the years and make better-informed decisions in current work. As DataSEA gains momentum, it faces multiple technical challenges relating to capacity storage. From a raw capacity perspective, data producers will rapidly overwhelm the system with massive amounts of data. From an accessibility perspective, analysts will expect to be able to retrieve any portion of the bulk data, from any system on the enterprise network. Sandia’s Institutional Computing is mitigating storage problems at the enterprise level by procuring new capacity storage systems that can be accessed from anywhere on the enterprise network. These systems use the simple storage service, or S3, API for data transfers. While S3 uses objects instead of files, users can access it from their desktops or Sandia’s high-performance computing (HPC) platforms. S3 is particularly well suited for bulk storage in DataSEA, as datasets can be decomposed into object that can be referenced and retrieved individually, as needed by an analyst. In this report we describe our experiences working with S3 storage and provide information about how developers can leverage Sandia’s current systems. We present performance results from two sets of experiments. First, we measure S3 throughput when exchanging data between four different HPC platforms and two different enterprise S3 storage systems on the Sandia Restricted Network (SRN). Second, we measure the performance of S3 when communicating with a custom-built Ceph storage system that was constructed from HPC components. Overall, while S3 storage is significantly slower than traditional HPC storage, it provides significant accessibility benefits that will be valuable for archiving and exploiting historical data. There are multiple opportunities that arise from this work, including enhancing DataSEA to leverage S3 for bulk storage and adding native S3 support to Sandia’s IOSS library.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.