Engineered Cu-rich islands were fabricated on an Al thin film to investigate pit initiation mechanisms at noble particles. X-ray photoelectron spectroscopy confirms that the thin film Cu-rich islands interdiffuse with the underlying Al substrate to form Al{sub 2}Cu islands. The defect arrays exhibit open circuit potential fluctuations whose magnitude and frequency increase as defect spacing decreases for constant island size and cathode/anode ratio. Post-exposure examination by energy dispersive spectroscopy (EDS) shows that the Al beneath the Cu-rich island dissolves with a crevice geometry. Engineered Al islands fabricated under identical conditions do not induce crevice corrosion in the vicinity of the Al defects. These results suggest that the Al dissolution is driven by the galvanic coupling between the noble island and matrix, and/or by a local change in chemistry, rather than by the presence of a defective oxide in the vicinity of the island.
Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.
We report progress of a continuing effort to characterize and simulate the response of energetic materials (EMs), primarily HMX-based, under conditions leading to cookoff. Our experiments include mechanical-effects testing of HMX and FIMX with binder at temperatures nearing decomposition thresholds. Additional experiments have focused on decomposition of these EMs under confinement, measuring evolution of gas products and observing the effect of pressurization on the solid. Real-time measurements on HMX show abrupt changes that maybe due to sudden void collapse under increasing load. Postmortem examination shows significant internal damage to the pellets, including voids and cracks. These experiments have been used to help develop a constitutive model for pure HMX. Unconfined uniaxial compression tests were performed on HMX and LX-14 to examine the effect of binders on the deviatoric strength of EM pellets, and to assess the need of including deviatoric terms in the model. A scale-up experiment will be described that is being developed to validate the model and provide additional diagnostics.
The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is clearly linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to a predictive safety model for HMX and HMX-containing EMs. We report work in progress on monitoring the phase transition with real-time Raman spectroscopy and ultrasonic measurements aimed towards a better understanding of physical properties through the phase transition. HMX samples were confined with minimal free volume.in a cell with constant volume. The cell was heated at a controlled rate and real-time Raman spectroscopic or ultrasonic measurements were performed. Raman spectroscopy provides a clear distinction between the two phases because the vibrational transitions of the molecule change with confirmational changes associated with the phase transition. Ultrasonic time-of-flight measurements provide an additional method of distinguishing the two phases because the sound speed through the material changes with the phase transition. Ultrasonic attenuation measurements also provide information about microstructural changes such as increased porosity due to evolution of gaseous decomposition products.
Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratory testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
We have conducted a fretting research project using MIL-L-87177 and CLT: X-10 lubricants on Nano-miniature connectors. When they were fretted without lubricant, individual connectors first exceeded our 0.5 ohm failure criteria from 2,341 to 45,238 fretting cycles. With additional fretting, their contact resistance increased to more than 100,000 ohms. Unmodified MIL-L-87177 lubricant delayed the onset of first failure to between 430,000 and over 20,000,000 fretting cycles. MIL-L-87177 modified by addition of Teflon powder delayed first failure to beyond 5 million fretting cycles. Best results were obtained when Teflon was used and also when both the straight and modified lubricants were poured into and then out of the connector. CLT: X-10 lubricant delayed the onset of first failure to beyond 55 million cycles in one test where a failure was actually observed and to beyond 20 million cycles in another that was terminated without failure. CLT: X-10 recovered an unlubricated connector driven deeply into failure, with six failed pins recovering immediately and four more recovering during an additional 420 thousand fretting cycles. MIL-L-87177 was not able to recover a connector under similar conditions.
Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.
Parallel microscopic experimentation (the combinatorial approach often used in solid-state science) was applied to characterize atmospheric copper corrosion behavior. Specifically, this technique permitted relative sulfidation rates to be determined for copper containing different levels of point defects and impurities (In, Al, O, and D). Corrosion studies are inherently difficult because of complex interactions between material interfaces and the environment. The combinatorial approach was demonstrated using micron-scale Cu lines that were exposed to a humid air environment containing sub-ppm levels of H{sub 2}S. The relative rate of Cu{sub 2}S growth was determined by measuring the change in resistance of the line. The data suggest that vacancy trapping by In and Al impurities slow the sulfidation rate. Increased sulfidation rates were found for samples containing excess point defects or deuterium. Furthermore, the sulfidation rate of 14 {micro}m wide Cu lines was increased above that for planar films.
A methodology has been established to predict the effect of atmospheric corrosion on the reliability of plastic encapsulated microelectronic (PEM) devices. New experimental techniques were developed to directly characterize the Al/Au wirebond interface where corrosion primarily occurs. A deterministic empirical model describing wirebond degradation as a function of environmental conditions was generated. To demonstrate how this model can be used to determine corrosion effects on device reliability, a numerical simulation was performed on a three-lead voltage reference device. Surface reaction rate constants, environmental variables and the defect characteristics of the encapsulant were treated as distributed parameters. A Sandia-developed analytical framework (CRAX{trademark}) was used to include uncertainty in the analysis and directly calculate reliability.
A dependence of elastic response on the stress-state of a thin film has been demonstrated using the interfacial force microscope (IFM). Indentation response was measured as a function of the applied biaxial stress-state for 100 nm thick Au films. An increase in measured elastic modulus with applied compressive stress, and a decrease with applied tensile stress was observed. Measurements of elastic modulus before and after applying stress were identical indicating that the observed change in response is not due to a permanent change in film properties.
This report focuses Sandia National Laboratories' effort to create high-temperature logging tools for geothermal applications not requiring heat-shielding. Tool electronics can operate up to 300 C with a few limiting components operating to 250 C. Second generation electronics are needed to increase measurement accuracy and extend the operating range to 300 and then 350 C are identified. Custom development of high-temperature batteries and assembling techniques are touched on. Outcomes of this work are discussed and new directions for developing high-temperature industry are suggested.
A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.
Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.
Coffinite (USiO{sub 4}) has been found in numerous sedimentary and hydrothermal environments including those considered as natural analogues of nuclear waste repositories. Scanning electron microscopy (SEM) and analytical electron microscopy (AEM) studies have been conducted on a uraninite sample from a U-deposit in Canada. It is observed that the uraninite (UO{sub 2+x}) is replaced by coffinite (U[SiO{sub 4}].nH{sub 2}O) and the replacing coffinite coexists with quartz. The TEM study shows {alpha}-recoil damage, lattice distortion, and low-angle boundaries among neighboring uraninite domains. Coffinitization seems more closely associated with {alpha}-recoil-damaged uraninite areas. Electron energy-loss spectroscopy (EELS) spectrum indicates that the ratio of U(+6)U(+4) in the uraninite is about 2/3, while the coffinite is dominated by U(+4). A thermodynamic calculation indicates that coffinitization can take place most likely at temperatures below 130 C if dissolved silica concentrations are limited by amorphous silica mineral phase. In a sufficiently high silica concentration environment, coffinite can form under the oxygen fugacity of 10{sup -65}-10{sup -55} atm. The equilibrium model, however, is not able to explain the coexistence of coffinite with quartz. A kinetic model that takes account of Ostwald processes is thus proposed. The kinetic model indicates that the presence of U(+6) in uraninite and the enhanced uraninite dissolution rate may be an important factor controlling uraninite coffinitization.
Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.
The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.
The stacking of second and third layers of supercrystals of self-assembled passivated gold nanoparticles has been investigated using transmission electron microscopy. We report for the first time nanoparticles occupying the twofold saddle site in the third layer.
The authors have directly measured the stress evolution during metal organic chemical vapor deposition of AlGaN/GaN heterostructures on sapphire. In situ stress measurements were correlated with ex situ microstructural analysis to directly determine a critical thickness for cracking and the subsequent relaxation kinetics of tensile-strained Al{sub x}Ga{sub 1{minus}x}N on GaN. Cracks appear to initiate the formation of misfit dislocations at the AlGaN/GaN interface, which account for the majority of the strain relaxation.
Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.
Flammable deposits have been analyzed from the exhaust systems of tools employing dichlorosilane (DCS) as a processing gas. Exact mass determinations with a high-resolution Fourier-transform ion-cyclotron resonance (FT-ICR) mass spectrometer allowed the identification of various polysiloxane species present in such an exhaust flow. Ion-molecule reactions indicate the preferred reaction pathway of siloxane formation is through HCl loss, leading to the highly reactive polysiloxane that was detected in the flammable deposits.
This report documents the 1996 evaluation by Pacific Gas and Electric Company of an advanced reserve-power system capable of supporting 2 MW of load for 10 seconds. The system, developed under a DOE Cooperative Agreement with AC Battery Corporation of East Troy, Wisconsin, contains battery storage that enables industrial facilities to ''ride through'' momentary outages. The evaluation consisted of tests of system performance using a wide variety of load types and operating conditions. The tests, which included simulated utility outages and voltage sags, demonstrated that the system could provide continuous power during utility outages and other disturbances and that it was compatible with a variety of load types found at industrial customer sites.
Representatives of the Department of Energy, the national laboratories, the Waste Isolation Pilot Plant (WIPP), and others gathered to initiate the development of broad-based concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle, including both geologic disposal and monitored retrievable storage. The workshop focused on two key questions: ''Why should we monitor?'' and ''What should we monitor?'' These questions were addressed by identifying the range of potential stakeholders, concerns that stakeholders may have, and the information needed to address those concerns. The group constructed a strategic framework for repository transparency implementation, organized around the issues of safety (both operational and environmental), diversion (assuring legitimate use and security), and viability (both political and economic). Potential concerns of the international community were recognized as the possibility of material diversion, the multinational impacts of potential radionuclide releases, and public and political perceptions of unsafe repositories. The workshop participants also identified potential roles that the WIPP may play as a monitoring technology development and demonstration test-bed facility. Concepts for WIPP'S potential test-bed role include serving as (1) an international monitoring technology and development testing facility, (2) an international demonstration facility, and (3) an education and technology exchange center on repository transparency technologies.
A small effort was conducted at Sandia National Laboratories to explore the use of a number of modern analytic technologies in the assessment of terrorist actions and to predict trends. This work focuses on Bayesian networks as a means of capturing correlations between groups, tactics, and targets. The data that was used as a test of the methodology was obtained by using a special parsing algorithm written in JAVA to create records in a database from information articles captured electronically. As a vulnerability assessment technique the approach proved very useful. The technology also proved to be a valuable development medium because of the ability to integrate blocks of information into a deployed network rather than waiting to fully deploy only after all relevant information has been assembled.
The objective of the SIERRA framework is to provide a common software infrastructure for massively parallel computational mechanics applications. The SIERRA framework consolidates the mechanics-independent computational services required by a diverse set of mechanics applications into a shared framework. Consolidation of these computational services eliminates their redundant development and maintenance efforts and streamlines the coupling of independently developed computational mechanics capabilities into integrated multi-mechanics applications.
The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution.
This report provides a statistical description of the types and severities of tractor semi-trailer accidents involving at least one fatality. The data were developed for use in risk assessments of hazardous materials transportation. A previous study (SAND93-2580) reviewed the availability of accident data, identified the TIFA (Trucks Involved in Fatal Accidents) as the best source of accident data for accidents involving heavy trucks, and provided statistics on accident data collected between 1980 and 1990. The current study is an extension of the previous work and describes data collected for heavy truck accidents occurring between 1992 and 1996. The TIFA database created at the University of Michigan Transportation Research Institute was extensively utilized. Supplementary data on collision and fire severity, which was not available in the TIFA database, were obtained by reviewing police reports and interviewing responders and witnesses for selected TEA accidents. The results are described in terms of frequencies of different accident types and cumulative distribution functions for the peak contact velocity, rollover skid distance, effective fire temperature, fire size, fire separation, and fire duration.
SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.
A fast precondition technique has been developed which accelerates the finite difference solutions of the 3D Maxwell's equations for geophysical modeling. The technique splits the electric field into its curl free and divergence free projections, and allows for the construction of an inverse operator. Test examples show an order of magnitude speed up compared with a simple Jacobi preconditioner. Using this preconditioner a low frequency Neumann series expansion is developed and used to compute responses at multiple frequencies very efficiently. Simulations requiring responses at multiple frequencies, show that the Neumann series is faster than the preconditioned solution, which must compute solutions at each discrete frequency. A Neumann series expansion has also been developed in the high frequency limit along with spectral Lanczos methods in both the high and low frequency cases for simulating multiple frequency responses with maximum efficiency. The research described in this report was to have been carried out over a two-year period. Because of communication difficulties, the project was funded for first year only. Thus the contents of this report are incomplete with respect to the original project objectives.
Wavefront curvature defocus effects occur in spotlight-mode SAR imagery when reconstructed via the well-known polar-formatting algorithm (PFA) under certain imaging scenarios. These include imaging at close range, using a very low radar center frequency, utilizing high resolution, and/or imaging very large scenes. Wavefront curvature effects arise from the unrealistic assumption of strictly planar wavefronts illuminating the imaged scene. This dissertation presents a method for the correction of wavefront curvature defocus effects under these scenarios, concentrating on the generalized: squint-mode imaging scenario and its computational aspects. This correction is accomplished through an efficient one-dimensional, image domain filter applied as a post-processing step to PF.4. This post-filter, referred to as SVPF, is precalculated from a theoretical derivation of the wavefront curvature effect and varies as a function of scene location. Prior to SVPF, severe restrictions were placed on the imaged scene size in order to avoid defocus effects under these scenarios when using PFA. The SVPF algorithm eliminates the need for scene size restrictions when wavefront curvature effects are present, correcting for wavefront curvature in broadside as well as squinted collection modes while imposing little additional computational penalty for squinted images. This dissertation covers the theoretical development, implementation and analysis of the generalized, squint-mode SVPF algorithm (of which broadside-mode is a special case) and provides examples of its capabilities and limitations as well as offering guidelines for maximizing its computational efficiency. Tradeoffs between the PFA/SVPF combination and other spotlight-mode SAR image formation techniques are discussed with regard to computational burden, image quality, and imaging geometry constraints. It is demonstrated that other methods fail to exhibit a clear computational advantage over polar-formatting in conjunction with SVPF. This research concludes that PFA in conjunction with SVPF provides a computationally efficient spotlight-mode image formation solution that solves the wavefront curvature problem for most standoff distances and patch sizes, regardless of squint, resolution or radar center frequency. Additional advantages are that SVPF is not iterative and has no dependence on the visual contents of the scene: resulting in a deterministic computational complexity which typically adds only thirty percent to the overall image formation time.
Sandia National Laboratories has tested and evaluated the Kinemetrics/Quanterra Q730B-bb (broadband) and Q730B-sp (short period) borehole installation remote digitizers. The test results included in this report were for response to static and dynamic input signals, seismic application performance, data time-tag accuracy, and reference signal generator (calibrator) performance. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and P1241 (Preliminary Draft) for Analog to Digital Converters; others were designed by Sandia specifically for seismic application evaluation and for supplementary criteria not addressed in the IEEE standards. When appropriate, test instrumentation calibration is traceable to the National Institute for Standards Technology (NIST).
The prediction of potential flow about zero thickness membranes by the boundary element method constitutes an integral component of the Lagrangian vortex-boundary element simulation of flow about parachutes. To this end, the vortex loop (or the panel) method has been used, for some time now, in the aerospace industry with relative success [1, 2]. Vortex loops (with constant circulation) are equivalent to boundary elements with piecewise constant variation of the potential jump. In this case, extending the analysis in [3], the near field potential velocity evaluations can be shown to be {Omicron}(1). The accurate evaluation of the potential velocity field very near the parachute surface is particularly critical to the overall accuracy and stability of the vortex-boundary element simulations. As we will demonstrate in Section 3, the boundary integral singularities, which arise due to the application of low order boundary elements, may lead to severely spiked potential velocities at vortex element centers that are near the boundary. The spikes in turn cause the erratic motion of the vortex elements, and the eventual loss of smoothness of the vorticity field and possible numerical blow up. In light of the arguments above, the application of boundary elements with (at least) a linear variation of the potential jump--or, equivalently, piecewise constant vortex sheets--would appear to be more appropriate for vortex-boundary element simulations. For this case, two strategies are possible for obtaining the potential flow field. The first option is to solve the integral equations for the (unknown) strengths of the surface vortex sheets. As we will discuss in Section 2.1, the challenge in this case is to devise a consistent system of equations that imposes the solenoidality of the locally 2-D vortex sheets. The second approach is to solve for the unknown potential jump distribution. In this case, for commonly used C{sup o} shape functions, the boundary integral is singular at the collocation points. Unfortunately, the development of elements with C{sup 1} continuity for the potential jumps is quite complicated in 3-D. To this end, the application of Galerkin ''smoothing'' to the boundary integral equations removes the singularity at the collocation points; thus allowing the use of C{sup o} elements and potential jump distributions [4]. Successful implementations of the Galerkin Boundary Element Method to 2-D conduction [4] and elastostatic [5] problems have been reported in the literature. Thus far, the singularity removal algorithms have been based on a posterior and mathematically complex reasoning, which have required Taylor series expansion and limit processes. The application of these strategies to 3-D is expected to be significantly more complicated. In this report, we develop the formulation for a ''Regularized'' Galerkin Boundary Element Method (RGBEM). The regularization procedure involves simple manipulations using vector calculus to reduce the singularity of the hypersingular boundary integral equation by two orders for C{sup o} elements. For the case of linear potential jump distributions over plane triangles the regularized integral is simplified considerably to a double surface integral of the Green function. This is the case implemented and tested in this report. Using the example problem of flow normal to a square flat plate, the linear RGBEM predictions are demonstrated here to be more accurate, to converge faster, and to be significantly less spiked than the solutions obtained by the vortex loop method.
The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.
The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis for accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation.
This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.
The advent of inductively coupled plasma-atomic emission spectrometers (ICP-AES) equipped with charge-coupled-device (CCD) detector arrays allows the application of multivariate calibration methods to the quantitative analysis of spectral data. We have applied classical least squares (CLS) methods to the analysis of a variety of samples containing up to 12 elements plus an internal standard. The elements included in the calibration models were Ag, Al, As, Au, Cd, Cr, Cu, Fe, Ni, Pb, Pd, and Se. By performing the CLS analysis separately in each of 46 spectral windows and by pooling the CLS concentration results for each element in all windows in a statistically efficient manner, we have been able to significantly improve the accuracy and precision of the ICP-AES analyses relative to the univariate and single-window multivariate methods supplied with the spectrometer. This new multi-window CLS (MWCLS) approach simplifies the analyses by providing a single concentration determination for each element from all spectral windows. Thus, the analyst does not have to perform the tedious task of reviewing the results from each window in an attempt to decide the correct value among discrepant analyses in one or more windows for each element. Furthermore, it is not necessary to construct a spectral correction model for each window prior to calibration and analysis: When one or more interfering elements was present, the new MWCLS method was able to reduce prediction errors for a selected analyte by more than 2 orders of magnitude compared to the worst case single-window multivariate and univariate predictions. The MWCLS detection limits in the presence of multiple interferences are 15 rig/g (i.e., 15 ppb) or better for each element. In addition, errors with the new method are only slightly inflated when only a single target element is included in the calibration (i.e., knowledge of all other elements is excluded during calibration). The MWCLS method is found to be vastly superior to partial least squares (PLS) in this case of limited numbers of calibration samples.
Corrosion is an important consideration in the design of a solder joint. In the case of a conduit, corrosion from both the outside service environment and the medium being transported within the pipe or tube must be addressed. Solder joints are susceptible to atmospheric corrosion, galvanic corrosion, voltage-assisted corrosion, stress corrosion cracking, and corrosion fatigue cracking. Galvanic corrosion is of particular concern, given the fact that solder joints are comprised of different metals or alloys in contact with one another.
Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).
Chemically prepared Pb(Zr{sub 0.951}Ti{sub 0.949}){sub 0.982}Nb{sub 0.018}O{sub 3} ceramics were fabricated that were greater than 95% dense for sintering temperatures as low as 925 C. Achieving high density at low firing temperatures permitted isolation of the effects of grain size, from those due to porosity, on both dielectric and pressure induced transformation properties. Specifically, two samples of similar high density, but with grain sizes of 0.7 {micro}m and 8.5 {micro}m, respectively, were characterized. The hydrostatic ferroelectric (FE) to antiferroelectric (AFE) transformation pressure was substantially less (150 MPa) for the lower grain size material than for the larger grain size material. In addition, the dielectric constant increased and the Curie temperature decreased for the sample with lower grain size. All three properties: dielectric constant magnitude, Curie point shift, and FE to AFE phase transformation pressure were shown to be semi-quantitatively consistent with internal stress levels on the order of 100 MPa.
In this letter we discusses the first application of 3-dimensional nonlocal density functional calculations to the interactions of solvated rigid polymers. The three cases considered are cylindrical polymers, bead-chain polymers, and periodic polymers. We calculate potentials of mean force, and show that polymer surface structure plays a critical role in determining the solvation energy landscape which in turn controls routes to assembly of the macromolecules.
For optical fibers used in adverse environments, a carbon coating is frequently deposited on the fiber surface to prevent water and hydrogen ingression that lead respectively to strength degradation through fatigue and hydrogen-induced attenuation. The deposition of a hermetic carbon coating onto an optical fiber during the draw process holds a particular challenge when thermally-cured specialty coatings are subsequently applied because of the slower drawing rate. In this paper, we report on our efforts to improve the low-speed carbon deposition process by altering the composition and concentration of hydrocarbon precursor gases. The resulting carbon layers have been analyzed for electrical resistance, Raman spectra, coating thickness, and surface roughness, then compared to strength data and dynamic fatigue behavior.
We demonstrate for the first time anti-guided coupling of two adjacent vertical-cavity surface-emitting lasers (VCSEL's), obtaining a 1-by-2 phase-locked array at 869 nm. The lateral index modification required for anti-guiding is achieved by a patterned 3-rim etch performed between two epitaxial growths. In contrast with prior evanescently coupled VCSEL's, adjacent anti-guided VCSEL's can emit in-phase and produce a single on-axis lobe in the far field. Greater than 2 mW of in-phase output power is demonstrated with two VCSEL's separated by 8 {micro}m. Moreover, phase locking of two VCSEL's separated by 20 {micro}m is observed, indicating the possibility of a new class of optical circuits based upon VCSEL's that interact horizontally and emit vertically.
In this letter we report the growth (by MOVPE) and characterization of quaternary AlGaInN. A combination of PL, high-resolution XRD, and RBS characterizations enables us to explore and delineate the contours of equil-emission energy and lattice parameters as functions of the quaternary compositions. The observation of room temperature PL emission as short as 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GdnN MQW heterostructures have also been grown; both x-ray diffraction and PL measurement suggest the possibility of incorporating this quaternary into optoelectronic devices.
Sweeping algorithms have become very mature and can create a semi-structured mesh on a large set of solids. However, these algorithms require that all linking surfaces be mappable or submappable. This restriction excludes solids with imprints or protrusions on the linking surfaces. The grafting algorithm allows these solids to be swept. It then locally modifies the position and connectivity of the nodes on the linking surfaces to align with the graft surfaces. Once a high-quality surface mesh is formed on the graft surface, it is swept along the branch creating a 2 3/4-D mesh.
We present a new shape measure for tetrahedral elements that is optimal in the sense that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. We use this shape measure to formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Because the element condition number is not defined for tetrahedral with negative volume, these objective functions can be used only when the initial mesh is valid. Therefore, we formulate a third objective function using the determinant of the element Jacobian that is suitable for mesh untangling. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement and untangling methods. We show that a combined optimization approach that uses both condition number objective functions obtains the best-quality meshes.
Objective functions for unstructured hexahedral and tetrahedral mesh optimization are analyzed using matrices and matrix norms. Mesh untangling objective functions that create valid meshes are used to initialize the optimization process. Several new objective functions to achieve element invertibility and quality are investigated, the most promising being the ''condition number''. The condition number of the Jacobian matrix of an element forms the basis of a barrier-based objective function that measures the distance to the set of singular matrices and has the ideal matrix as a stationary point. The method was implemented in the Cubit code, with promising results.
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
A new method for lessening skew in mapped meshes is presented. This new method involves progressive subdivision of a surface into loops consisting of four sides. Using these loops, constraints can then be set on the curves of the surface, which will propagate interval assignments across the surface, allowing a mesh with a better skew metric to be generated.
Current hexahedral mesh generation techniques rely on a set of meshing tools, which when combined with geometry decomposition leads to an adequate mesh generation process. Of these tools, sweeping tends to be the workhorse algorithm, accounting for at least 50% of most meshing applications. Constraints which must be met for a volume to be sweepable are derived, and it is proven that these constraints are necessary but not sufficient conditions for sweepability. This paper also describes a new algorithm for detecting extruded or sweepable geometries. This algorithm, based on these constraints, uses topological and local geometric information, and is more robust than feature recognition-based algorithms. A method for computing sweep dependencies in volume assemblies is also given. The auto sweep detect and sweep grouping algorithms have been used to reduce interactive user time required to generate all-hexahedral meshes by filtering out non-sweepable volumes needing further decomposition and by allowing concurrent meshing of independent sweep groups. Parts of the auto sweep detect algorithm have also been used to identify independent sweep paths, for use in volume-based interval assignment.
Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.
Soldering provides a cost-effective means for attaching electronic packages to circuit boards using both small scale and large scale manufacturing processes. Soldering processes accommodate through-hole leaded components as well as surface mount packages, including the newer area array packages such as the Ball Grid Arrays (BGA), Chip Scale Packages (CSP), and Flip Chip Technology. The versatility of soldering is attributed to the variety of available solder alloy compositions, substrate material methodologies, and different manufacturing processes. For example, low melting temperature solders are used with temperature sensitive materials and components. On the other hand, higher melting temperature solders provide reliable interconnects for electronics used in high temperature service. Automated soldering techniques can support large-volume manufacturing processes, while providing high reliability electronic products at a reasonable cost.
A liquid crystal (LC) and a side-chain liquid crystalline polymer (SCLCP) were tested as surface acoustic wave (SAW) vapor sensor coatings for discriminating between pairs of isomeric organic vapors. Both exhibit room temperature smectic mesophases. Temperature, electric-field, and pretreatment with self-assembled monolayers comprising either a methyl-terminated or carboxylic acid-terminated alkane thiol anchored to a gold layer in the delay path of the sensor were explored as means of affecting the alignment and selectivity of the LC and SCLCP films. Results for the LC were mixed, while those for the SCLCP showed a consistent preference for the more rod-like isomer of each isomer pair examined.
Most engineering alloys contain numerous alloying elements and their solidification behavior can not typically be modeled with existing binary and ternary phase diagrams. There has recently been considerable progress in the development of thermodynamic software programs for calculating solidification parameters and phase diagrams of multi-component systems. These routines can potentially provide useful input data that are needed in multi-component solidification models. However, these thermodynamic routines require validation before they can be confidently applied to simulations of alloys over a wide range of composition. In this article, a preliminary assessment of the accuracy of the Thermo-Calc NiFe Superalloy database is presented. The database validation is conducted by comparing calculated phase diagram quantities to experimental measurements available in the literature. Comparisons are provided in terms of calculated and measured liquidus and solidus temperatures and slopes, equilibrium distribution coefficients, and multi-component phase diagrams. Reasonable agreement is observed among the comparisons made to date. Examples are provided which illustrate how the database can be used to approximate the solidification sequence and final segregation patterns in multi-component alloys. An additional example of the coupling of calculated phase diagrams to solute redistribution computations in a commercial eight component Ni base superalloy is also presented.
Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub sc}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices.
The C49 to C54 TiSi{sub 2} transformation temperature is shown to be reduced by increasing the ramp rate during rapid thermal processing and this effect is more pronounced for thinner initial Ti and Ti(Ta) films. Experiments were performed on blanket wafers and on wafers that had patterned polycrystalline Si lines with Si{sub 3}N{sub 4} sidewall spacers. Changing the ramp rate caused no change in the transformation temperature for 60 nm blanket Ti films. For blanket Ti films of 25 or 40 nm, however, increasing the ramp rate from 7 to 180 C/s decreased the transformation temperature by 15 C. Studies of patterned lines indicate that sheet resistance of narrow lines is reduced by increased ramp rates for both Ti and Ti(Ta) films, especially as the linewidths decrease below 0.4 {micro}m. This improvement is particularly pronounced for the thinnest Ti(Ta) films, which exhibited almost no linewidth effect after being annealed with a ramp rate of 75 C/s.
The design, fabrication and characterization of a low-voltage rotary stepper motor are presented in this work. Using a five-level polysilicon MEMS technology, steps were taken to increase the capacitance over previous stepper motor designs to generate high torque at low voltages. A low-friction hub was developed to minimize frictional loads due to rubbing surfaces, producing an estimated resistive torque of about 6 pN-m. This design also allowed investigations into the potential benefit of using hard materials such as silicon nitride for lining of both the stationary and rotating hub components. The result is an electrostatic stepper motor capable of operation at less than six volts.
Scanning capacitance microscopy (SCM) was used to study the cross section of an operating p-channel MOSFET. We discuss the novel test structure design and the modifications to the SCM hardware that enabled us to perform SCM while applying dc bias voltages to operate the device. The results are compared with device simulations performed with DAVINCI.
NIST and Sandia have developed a procedure for producing and calibrating critical dimension (CD), or linewidth, reference materials. These reference materials will be used to calibrate metrology instruments used in semiconductor manufacturing. The artifacts, with widths down to 100 nm, are produced in monocrystalline silicon with all feature edges aligned to specific crystal planes. A two-part calibration of these linewidths is used: the primary calibration, with accuracy to within a few lattice plane thicknesses, is accomplished by counting the lattice planes across the sample as-imaged through use of high-resolution transmission electron microscopy (HRTEM). The secondary calibration is the high-precision electrical CD technique. NIST and Sandia are developing critical dimension (CD), or linewidth, reference materials for use by the semiconductor industry. To meet the current requirements of this rapidly changing industry, the widths of the reference features must be at or below the widths of the finest features in production and/or development. Further, these features must produce consistent results no matter which metrology tool (e.g., scanning electron microscope, scanned probe microscope, electrical metrology) is used to make the measurement. This leads to a requirement for the samples to have planar surfaces, known sidewall angles, and uniform material composition. None of the production techniques in use in semiconductor manufacturing can produce features with all these characteristics. In addition, requirements specified in the National Technology Roadmap for Semiconductors indicate that the width of the feature must be accurately calibrated to approximately 1-2 nm, a value well beyond the current capabilities of the instruments used for semiconductor metrology.
Concerning the mitigation of high pressure core melt scenarios, the design objective for future PWRS is to transfer high pressure core melt to low pressure core melt sequences, by means of pressure relief valves at the primary circuit, with such a discharge capacity to limit the pressure in the reactor coolant system to less than 20 bar. Studies have shown that in late in-vessel reflooding scenarios there may be a time window where the pressure is indeed in this range, at the moment of the reactor vessel rupture. It has to be verified that large quantities of corium released from the vessel after failure at pressures <20 bar cannot be carried out of the reactor pit, because the melt collecting and cooling concept of future PWRs would be rendered useless. Existing experiments investigated the melt dispersal phenomena in the context of the DCH resolution for existing power plants in the USA, most of them having cavities with large instrument tunnels leading into subcompartments. For such designs, breaches with small cross sections at high vessel failure pressures had been studied. However, some present and future European PWRs have an annular cavity design without a large pathway out of the cavity other than through the narrow annular gap between the RPV and the cavity wall. Therefore, an experimental program was launched, focusing on the annular cavity design and low pressure vessel failure. The first part of the program comprises two experiments which were performed with thermite melt steam and a prototypic atmosphere in the containment in a scale 1:10. The initial pressure in the RPV-model was 11 and 15 bars, and the breach was a hole at the center of the lower head with a scaled diameter of 100 cm and 40 cm, respectively. The main results were: 78% of melt mass were ejected out of the cavity with the large hole and 21% with the small hole; the maximum pressures in the model containment were 6 bar and 4 bar, respectively. In the second part of the experimental program a detailed investigation of geometry effects is being carried out. The test facility DISCO-C has been built for performing dispersion experiments with cold simulant materials in a 1/18 scale. The fluids are water or bismuth alloy instead of melt, and nitrogen or helium instead of steam.
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically-based numerical model for simulation of coupled fluid flow and reactive chemical transport including both fast and slow reactions invariably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation-dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.
We report the growth of InSb on GaAs using InAlSb buffers of high interest for magnetic field sensors. We have grown samples by metal-organic chemical vapor deposition consisting of {approximately} 0.55 {micro}m thick InSb layers with resistive InAlSb buffers on GaAs substrates with measured electron nobilities of {approximately}40,000 cm{sup 2}/V.s. We have investigated the In{sub 1{minus}x}Al{sub x}Sb buffers for compositions x{le}0.22 and have found that the best results are obtained near x=0.12 due to the tradeoff of buffer layer bandgap and lattice mismatch.
The electrical conductivities of boron carbides, B{sub 12+x}C{sub 3{minus}x} with 0.1 < x < 1.7, between 300 and 1200K suggest the hopping of a nearly temperature-independent density of small (bi)polarons. The activation energies of the nobilities are low, {approx} 0.16 eV, and are nearly independent of the composition. At lower temperatures, conductivities have non-Arrhenius temperature dependencies and strong sensitivity to carbon concentration. Percolative aspects of low-temperature hopping are evident in this sensitivity to composition. Boron carbides' Seebeck coefficients are anomalous in that (1) they are much larger than expected from boron carbides' large carrier densities and (2) they depend only weakly on the carrier density. Carrier-induced softening of local vibrations gives contributions to the Seebeck coefficient that mirror the magnitudes and temperature dependencies found in boron carbides.
A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller.
Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.
The electrical properties were investigated for ruthenium oxide based devitrifiable resistors embedded within low temperature co-fired ceramics. Special attention was given to the processing conditions and their affects on resistance and temperature coefficient of resistance (TCR). Results indicate that the conductance for these buried resistors is limited by tunneling of charge carriers through the thin glass layer between ruthenium oxide particles. A modified version of the tunneling barrier model is proposed to more accurately account for the microstructure ripening observed during thermal processing. The model parameters determined from curve fitting show that charging energy (i.e., the energy required for a charge carrier to tunnel through the glass barrier) is strongly dependent on particle size and particle-particle separation between ruthenium oxide grains. Initial coarsening of ruthenium oxide grains was found to reduce the charging energy and lower the resistance. However, when extended ripening occurs, the increase in particle-particle separation increases the charging energy, reduces the tunneling probability and gives rise to a higher resistance. The trade-off between these two effects results an optimum microstructure with a minimum resistance and TCR. Furthermore, the TCR of these resistors has been shown to be governed by the magnitude of the charging energy. Model parameters determined by our analysis appear to provide quantitative physical interpretations to the microstructural change in the resistor, which in turn, are controlled by the processing conditions.
A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.
The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial SONY cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity in the open circuit cell condition. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC). Microcalorimetry was used to measure the time dependence of heat generating side reactions also as a function of SOC. Components of cells were measured using differential scanning calorimetry (DSC) to study the thermal reactivity of the individual electrodes to determine the temperature regimes and conditions of the major thermal reactions. Thermal decomposition of the SEI layer at the anodes was identified as the initiating source for thermal runaway. The cells with Li{sub x}CoO{sub 2} cathodes showed greater sensitivity to SOC and higher accelerating heating rates than seen for the cells with Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2}cathodes. Lower temperature reactions starting as low as 40 C were also observed that were SOC dependent but not accelerating. These reactions were also measured in the microcalorimeter and observed to decay over time with a power-law dependence and are believed to result in irreversible capacity loss in the cells.
Thermal modeling and simulations were used to analyze the thermal profiles of a polysilicon-metal test structure generated by thermally-induced voltage alteration (TIVA), a new laser-based failure analysis technique to localize shorted interconnects. The results show that variations in TIVA thermal profiles are due mainly to preferential laser absorption in various locations in the test structure. Differences in oxide thickness also affect the local heat conduction and temperature distribution. Modeling results also show that local variation in heat conduction is less important than the absorbed laser power in determining the local temperatures since our test structure has feature sizes that are small compared to the length over which heat spreads.
The spatial arrangement of sodium cations for a series of sodium phosphate glasses, xNa{sub 2}O(100-x)P{sub 2}O{sub 5} (x<55), were investigated using {sup 23}Na spin-echo NMR spectroscopy. The spin-echo decay rate is a function of the Na-Na homonuclear dipolar coupling and is related to the spatial proximity of neighboring Na nuclei. The spin-echo decay rate in these sodium phosphate glasses increases non-linearly with higher sodium number density, and thus provides a measure of the Na-Na extended range order. The results of these {sup 23}Na NMR experiments are discussed within the context of several structural models, including a decimated crystal lattice model, cubic dilation lattice model, a hard sphere (HS) random distribution model and a pair-wise cluster hard sphere model. While the experimental {sup 23}Na spin-echo M{sub 2} are described adequately by both the decimated lattice and the random HS model, it is demonstrated that the slight non-linear behavior of M{sub 2} as a function of sodium number density is more correctly described by the random distribution in the HS model. At low sodium number densities the experimental M{sub 2} is inconsistent with models incorporating Na-Na clustering. The ability to distinguish between Na-Na clusters and non-clustered distributions becomes more difficult at higher sodium concentrations.
We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.
We compare 2 angular regimes for the measurement of changes in the real refractive index of bulk fluid analytes. The measurements are based on the use of the Kretschmann-Raether configuration to sense a change in reflectivity with index. Specifically, we numerically simulate the relative sensitivities of the total internal reflection (TIR) and surface-plasmon resonance (SPR) regimes. For a fixed-angle apparatus, the method which gives the greatest change in reflectivity varies with metal film thickness. For films thicker than the skin depth, the SPR regime is the most sensitive to index changes. For thinner films, however, the TIR angle is then dominant, with increases in sensitivity on the order of 75% for 10 nm gold or silver media.
We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.
We are developing a method of constructing compact, three-dimensional photonics systems consisting of optical elements, e.g., lenses and mirrors, photo-detectors, and light sources, e.g., VCSELS or circular-grating lasers. These optical components, both active and passive, are mounted on a lithographically prepared silicon substrate. We refer to the substrate as a micro-optical table (MOT) in analogy with the macroscopic version routinely used in optics laboratories. The MOT is a zero-alignment, microscopic optical-system concept. The position of each optical element relative to other optical elements on the MOT is determined in the layout of the MOT photomask. Each optical element fits into a slot etched in the silicon MOT. The slots are etched using a high-aspect-ratio silicon etching (HARSE) process. Additional positioning features in each slot's cross-section and complementary features on each optical element permit accurate placement of that element's aperture relative to the MOT substrate. In this paper we present the results of the first fabrication and micro-assembly experiments of a silicon-wafer based MOT. Based on these experiments, estimates of position accuracy are reported. We also report on progress in fabrication of lens elements in a hybrid sol-gel material (HSGM). Diffractive optical elements have been patterned in a 13-micron thick HSGM layer on a 150-micron thick soda-lime glass substrate. The measured ms surface roughness was 20 nm. Finally, we describe modeling of MOT systems using non-sequential ray tracing (NSRT).
The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10{sup -4} M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements.
A portable, autonomous, hand-held chemical laboratory ({micro}ChemLab{trademark}) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.
InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effective n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.
High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.
Previous work showed the possible existence of a total-dose latch effect in fully-depleted SOI transistors that could severely limit the radiation hardness of SOI devices. Other work showed that worst-case bias configuration during irradiation was the transmission gate bias configuration. In this work we further explore the effects of total-dose ionizing irradiation on fully-depleted SOI transistors. Closed-geometry and standard transistors fabricated in two fully-depleted processes were irradiated with 10-keV x rays. Our results show no evidence for a total-dose latch effect as proposed by others. Instead, in absence of parasitic trench sidewall leakage, our data suggests that the increase in radiation-induced leakage current is caused by positive charge trapping in the buried oxide inverting the back-channel interface. At moderate levels of trapped charge, the back-channel interface is slightly inverted causing a small leakage current to flow. This leakage current is amplified to considerably higher levels by impact ionization. Because the back-channel interface is in weak inversion, the top-gate bias can modulate the back-channel interface and turn the leakage current off at large, negative voltage levels. At high levels of trapped charge, the back-channel interface is fully inverted and the gate bias has little effect on leakage current. However, it is likely that this current also is amplified by impact ionization. For these transistors, the worst-case bias configuration was determined to be the ''ON'' bias configuration. These results have important implication on hardness assurance.
The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national research enterprise.
Starting from the microscopic light-matter interaction in form of the minimal coupling Hamiltonian, the multipole approximation for the optical response of localized electrons in atomic systems is extended to delocalized electrons in solids. A spatial averaging procedure is used to derive the electromagnetic sources for macroscopic Maxwell's equations as well as the corresponding many particle Hamiltonian on a coarse grained length scale. The results are illustrated for semiconductor bulk material up to quadruple moments for the interband transitions, where gauge invariant equations of motion for the optical response are obtained.
Simulation of chemical vapor deposition (CVD) in submicron features typical of semiconductor devices has been facilitated by extending the EVOLVE thin film etch and deposition simulation code to use thermal reaction mechanisms expressed in the Chemkin format. This allows consistent coupling between EVOLVE and reactor simulation codes that use Chemkin. In an application of a reactor-scale simulation code providing surface fluxes to a feature-scale simulation code, a proposed reaction mechanism for TEOS pyrolysis to deposit SiO{sub 2}, which had been applied successfully to reactor-scale simulation, is seen not to predict the low step coverage over trenches observed under short reactor residence time conditions. An apparent discrepancy between the mechanism and profile-evolution observations is a reduced degree of sensitivity of the deposition rate to the presence of reaction products, i.e., the byproduct inhibition effect is underpredicted. The cause of the proposed mechanism's insensitivity to byproduct inhibition is investigated with the combined reactor and topography simulators first by manipulating the surface to volume ratio of a simulated reactor and second by calibrating parameters in the proposed mechanism such as the calculated free energies of surface molecules. The conclusion is that the byproduct inhibition can not be enhanced to fit profile evolution data without comprising agreement with reactor scale data by simply adjusting mechanism parameters. Thus, additional surface reaction channels seem to be required to reproduce simultaneously experimental reactor-scale growth rates and experimental step coverages.
This study is devoted to providing a mechanistic rationale of coarsening induced failure in solder alloys during thermomechanical fatigue. Micromechanical modeling of cyclic deformation of eutectic tin-lead alloy was undertaken using the finite element method. The models consist of regularly arranged tin-rich and lead-rich phases, simulating the lamellar array and colony structure in a typical eutectic system. A fine structure and a coarse structure, bearing the same phase fraction but different in the aspect ratio of each lead-rich layer and in the number of lead-rich layers in each colony, are utilized for representing the microstructure before and after coarsening, respectively. Both phases are treated as elastic-plastic solids with their respective properties. For simplicity the creep effect is ignored without compromising the main objective of this study. Cyclic loading under pure shear and uniaxial conditions is modeled. It is found that both the fine and coarse structures exhibit essentially the same macroscopic stress-strain response. The coarse structure, however, shows a greater maximum effective plastic strain on a local scale throughout the deformation. The numerical result implies that, in a solder joint, a locally coarsened region may not be mechanically weaker than its surrounding, but it is subject to early damage initiation due to accumulated plasticity. Other implications regarding solder alloy failure and micromechanical modeling of two-phase materials are discussed.
The importance of interfacial processes in materials joining has a long history. A significant amount of work has suggested that processes collateral to wetting can affect the extent of wetting and moderate or retard wetting rate. Even very small additions of a constituent, known to react with the substrate, cause pronounced improvement in wetting and are exploited in braze alloys, especially those used for joining to ceramics. The wide diversity of processes, such as diffusion, chemical reaction, and fluxing, and their possible combinations suggest that various rate laws should be expected for wetting kinetics depending on the controlling processes. These rate laws are expected to differ crucially from the standard fluid controlled wetting models found in the literature. Voitovitch et al. and Mortensen et al. have shown data that suggests diffusion control for some systems and reaction control for others. They also presented a model of wetting kinetics controlled by the diffusion of a constituent contained by the wetting fluid. In the following a model will be constructed for the wetting kinetics of a small droplet of metal containing a constituent that diffuses to the wetting line and chemically reacts with a flat, smooth substrate. The model is similar to that of Voitovitch et al. and Mortensen et al. but incorporates chemical reaction kinetics such that the result contains both diffusion and reaction kinetics. The model is constructed in the circular cylinder coordinate system, satisfies the diffusion equation under conditions of slow flow, and considers diffusion and reaction at the wetting line to be processes in series. This is done by solving the diffusion equation with proper initial and boundary conditions, computing the diffusive flux at the wetting line and equating this to both the convective flux and reaction flux. This procedure is similar to equating the current flowing in components of a series circuit. The wetting rate will be computed versus time for a variety of diffusion and reaction conditions. A transition is observed from nonlinear (diffusive) to linear (reactive) behavior as the control parameters (such as the diffusion coefficient) are modified. This is in agreement with experimental observations. The adequacy of the slow flow condition, used in this type of analysis, is discussed and an amended procedure is suggested.
Making information available and easy to find is the objective of designing a good web site. A company's Intranet typically provides a great deal of information to its employees in an effort to help them better perform their jobs. If the information is available but is difficult to locate, the usefulness of this information is diminished. Sandia National Laboratories performed a redesign of its home page and has obtained a successful design which enables its employees to locate information quickly and efficiently. Three phases of usability testing were conducted to develop and optimize the home page. This paper will discuss the redesign of the Intranet home page and describe how usability studies were used to help ensure a usable design.
Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint.
Within the framework of thermodynamic theory of plasticity and specific structural-variables (associated with individual dislocations), a transition has been made to an expression containing one internal variable of the averaging type--the density of glissile dislocations, N{sub g}. This expression should be considered a tensorial generalization of the well-known Orowan's equation and relates it directly to the simplest possible case of normal flow in metallic materials. Since most metals display deviations from normality in the flow rule{sup 7} it also clearly indicates that more rigorous assessment of the relation between plastic strain rate and dislocation populations is required especially for materials displaying plastic instabilities in the form of dislocation patterning, strain-softening and strain-rate softening phenomena. The obtained result could be a useful starting point in establishing such rigorous macroscopic relations from microscopic considerations associated with individual dislocations and to find useful applications in dislocation density-related constitutive modeling of plastic deformation.
Fiberglass tape and borosilicate filter discs impregnated with molten LiCl-KCl eutectic were examined for potential use as separators for high-temperature LiSi/LiCl-KCl/FeS{sub 2} thermal batteries. Test discs were punched from these materials and evaluated at 400 C in single cells at a steady-state current of 63 mA/cm{sup 2}. The performance generally improved with electrolyte loading for most of the materials. Better results were obtained with the filter discs than with the tape. The best overall results were obtained with Whatman GF/A discs. Active lives for cells with these separators were about 85% of the standard cells with pressed-powder separators. More work with other materials and electrolytes over a wider temperature range is underway, along with 5-cell-battery tests.
Thin-film electrodes of a plasma-sprayed Li-Si alloy were evaluated for use as anodes in high-temperature thermally activated (thermal) batteries. These anodes were prepared using 44% Li/56% Si (w/w) material as feed material in a special plasma-spray apparatus under helium or hydrogen, to protect this air- and moisture-sensitive material during deposition. Anodes were tested in single cells using conventional pressed-powder separators and lithiated pyrite cathodes at temperatures of 400 to 550 C at several different current densities. A limited number of 5-cell battery tests were also conducted. The data for the plasma-sprayed anodes was compared to that for conventional pressed-powder anodes. The performance of the plasma-sprayed anodes was inferior to that of conventional pressed-powder anodes, in that the cell emfs were lower (due to the lack of formation of the desired alloy phases) and the small porosity of these materials severely limited their rate capability. Consequently, plasma-sprayed Li-Si anodes would not be practical for use in thermal batteries.
High temperature XRD has been employed to monitor the devitrification of Dupont 951 low temperature co-fired ceramic (LTCC) and Dupont E84005 resistor ink. The LTCC underwent devitrification to an anorthite phase in the range of 835-875 C with activation energy of 180 kJ/mol as calculated from kinetic data. The resistor paste underwent devitrification in the 835-875 C range forming monoclinic and hexagonal celcian phases plus a phase believed to be a zinc-silicate. RuO{sub 2} appeared to be stable within this devitrified resistor matrix. X-ray radiography of a co-fired circuit indicated good structural/chemical compatibility between the resistor and LTCC.
We have discovered that small polyols are reasonably effective at stabilizing colloidal silica against aggregation, even under the conditions of high pH and salt concentration. Both quasielastic and elastic light scattering were used to show that these polyols dramatically decrease the aggregation rate of the suspension, changing the growth kinetics from diffusion-limited cluster-cluster aggregation to reaction-limited cluster-cluster aggregation. These polyols maybe useful in the treatment of tank wastes at the Hanford site.
This paper presents a new technique for automatically detecting interval constraints for swept volumes with holes. The technique finds true volume constraints that are not necessarily imposed by the surfaces of the volume. A graphing algorithm finds independent, parallel paths of edges from source surfaces to target surfaces. The number of intervals on two paths between a given source and target surface must be equal; in general, the collection of paths determine a set of linear constraints. Linear programming techniques solve the interval assignment problem for the surface and volume constraints simultaneously.
The model parameters for the normalized 1054V1 material were compared to parameters previously generated for 1026 steel, and the transformation behavior was relatively consistent. Validation of the model predictions by heating into the austenite plus undissolved ferrite phase field and rapidly quenching resulted in reasonable predictions when compared to the measured volume fractions from optical metallography. The hot rolled 1054V1 material, which had a much coarser grain size and a non-equilibrium volume fraction of pearlite, had significantly different model parameters and the on heating transformation behavior of this material was less predictable with the established model. The differences in behavior is consistent with conventional wisdom that normalized micro-structure produce a more consistent response to processing, and it reinforces the need for additional work in this area.
We present a microelectronics fabrication compatible process that comprises photolithography and a key room temperature SiON thin film plasma deposition to define and seal a fluidic microduct network. Our single wafer process is independent of thermo-mechanical material properties, particulate cleaning, global flatness, assembly alignment, and glue medium application, which are crucial for wafer fusion bonding or sealing techniques using a glue medium. From our preliminary experiments, we have identified a processing window to fabricate channels on silicon, glass and quartz substrates. Channels with a radius of curvature between 8 and 50 {micro}m, are uniform along channel lengths of several inches and repeatable across the wafer surfaces. To further develop this technology, we have begun characterizing the SiON film properties such as elastic modulus using nanoindentation, and chemical bonding compatibility with other microelectronic materials.
In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.
The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.
This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.
Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).
Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy (DOE) Weapons Ordnance Program. This annual report (calendar year 1998) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance at TTR extends only to those areas where SNL activities are carried out. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared in accordance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990a).
Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, among the largest developers of storage caverns along the Gulf Coast is the Strategic Petroleum Reserve (SPR) which has purchased or constructed 62 crude oil storage caverns in four storage sites (domes). Although SPR and commercial caverns have been operated economically for many years, the caverns still exhibit some relatively poorly understood behaviors, especially involving creep closure volume loss and hanging string damage from salt falls. Since it is possible to postulate that some of these behaviors stem from geomechanical or reformational aspects of the salt, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable value. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of limited non-steady state data to establish an approach or bound to steady state, as an estimate of the steady state behavior of a given salt. This permitted analysis of sparse creep databases for domal salts. It appears that a shortcoming of this steady state analysis method is that it obscures some critical differences of the salt material behavior. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on integration of the Multimechanism-Deformation (M-D) creep constitutive model to obtain fits to the transient response. This integration process permits definition of all the material sensitive parameters of the model, while those parameters that are constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Characteristics defined by the transient analysis are related quantitatively to the volume loss creep rate of the SPR caverns. This increase in understanding of the domal material creep response already has pointed to the possibility y of delineating the existence of material spines within a specific dome. Further definition of the domal geology and structure seems possible only through expansion of the creep databases for domal salts.
The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.
In order to understand the hindered rotational and vibrational dynamics of methane trapped in C{sub 60} interstices and to determine the structure around the interstitial site, they have carried out inelastic neutron scattering studies of the methane/C{sub 60} system. At temperatures of 20K and below, they observe inelastic peaks from rotational transitions of the CH{sub 4}. These transitions allow unambiguous assignment of the hindered rotational energy levels and a determination of the interaction potential. The appearance of two peaks for one of the J = 0{r_arrow}3 transitions implies the existence of two distinct kinds of interstitial sites and the measured transition energies suggest a rotational barrier of about 26 and 16 meV for these sites. Time-dependent changes in peak heights indicate slow t{sub 1/2} ({approx} 2.6 hrs) triplet{r_arrow}quintet nuclear spin conversion that necessarily accompanies the J = 1{r_arrow}0 rotational relaxation. They also have observed a sharp inelastic peak at 9.3 meV, which corresponds to a local vibrational mode of CH{sub 4} rattling in its cage at {approximately} 2.2 THz. Other peaks involving higher-energy vibrational excitations in CD{sub 4}/C{sub 60} correspond in energy to assigned peaks in the inelastic neutron scattering spectra of C{sub 60}, albeit sometimes with different intensities.
The methodology in this report improves on some of the limitations of many conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems and for expressing imprecise individual metrics as possibilistic or fuzzy numbers. A ''Markov-like'' model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of Markov modeling is to help convey the top-down system perspective. One of the constituent methodologies allows metrics to be weighted according to significance of the attribute and aggregated nonlinearly as to contribution. This aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed ''soft'' mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on ''overlap'' of the factors as well as by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on considering new controls that may be necessary. Third, trends in inputs and outputs are tracked in order to obtain significant information% including cyclic information for the decision process. A practical example from the air transportation industry is used to demonstrate application of the methodology. Illustrations are given for developing a structure (along with recommended inputs and weights) for air transportation oversight at three different levels, for developing and using cycle information, for developing Importance and Sensitivity measures for soil aggregation, for developing dependence methodology, for constructing early alert logic, for tracking trends, for relating the Markov model to other (e.g., Reason) models, for developing and demonstrating rudimentary laptop software, and for developing an input/output display methodology.
Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.
An evaluation was performed which examined the aging of surface mount solder joints assembled with 91.84Sn-3.33Ag-4.83Bi solder. Defect analysis of the as-fabricated test vehicles revealed excellent solderability, good package alignment, and a minimum number of voids. Continuous DC electrical monitoring of the solder joints did not reveal opens during as many as 10,000 thermal cycles (0 C, 100 C). The solder joints exhibited no significant degradation through 2500 cycles, based upon an absence of microstructural damage and sustained shear and pull strengths of chip capacitors and J-leaded solder joints, respectively. Thermal cycles of 5000 and 10,000 resulted in some surface cracking of the solder fillets and coatings. In a few cases, deeper cracks were observed in the thinner reaches of several solder fillets. There was no deformation or cracking in the solder located in the gap between the package I/O and the circuit board pad nor in the interior of the fillets, both locations that would raise concerns of joint mechanical integrity. A drop in the chip capacitor shear strength was attributed to crack growth near the top of the fillet.
The Z Accelerator is a fast pulse power facility capable of performing high-pressure studies of the dynamic response of materials under loading conditions unachievable with other methods. A variety of advanced laser diagnostics have been implemented on the facility for shock physics experiments. These include multipoint laser velocity interferometry,line and full field velocity interferometry, time-resolved optical and uv spectroscopy, and both active and passive shock breakout.
Shock-induced depoling of the ferroelectric ceramic PZT 95/5 is utilized in a number of pulsed power devices. Several experimental and theoretical efforts are in progress in order to improve numerical simulations of these devices. In this study we have examined the shock response of normally poled PZT 95/5 under uniaxial strain conditions. On each experiment the current produced in an external circuit and the transmitted waveform at a window interface were recorded. The peak electrical field generated within the PZT sample was varied through the choice of external circuit resistance. Shock pressures were varied from 0.6 to 4.6 GPa, and peak electrical fields were varied from 0.2 to 37 kV/cm. For a 2.4 GPa shock and the lowest peak field, a nearly constant current governed simply by the remanent polarization and the shock velocity was recorded. Both decreasing the shock pressure and increasing the electrical field resulted in reduced current generation, indicating a retardation of the depoling kinetics.
A method for finding a global optimum to the on-off minimum-time control problem with limited fuel usage is presented. Each control can take on only three possible values: maximum, zero, or minimum. The simplex method for linear systems naturally yields such a solution for the re-formulation presented herein because it always produces an extreme point solution to the linear program. Numerical examples for the benchmark linear flexible system are presented.
This work is an experimental investigation of the ability of a real three-link direct-drive arm to track model-based minimum-time trajectories that have been found off-line. Sufficiently large velocity gains in the computed torque control law were not achievable with the velocity sensors described herein. This indicates the critical importance of the velocity sensing when attempting to track trajectories that push the envelope of the system's torque capabilities.
Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.
The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams.
The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample.
This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.
Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs were defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.
Dose calculations were performed using the MELCOR Accident Consequence Code System (MACCS) to support safety analyses for the Los Alamos Neutron Science Center (LANSCE) facility. The LANSCE facility is operated and maintained at Los Alamos National Laboratory (LANL) and will be used to conduct experiments for the U.S. Department of Energy (DOE) to investigate the use of accelerators to produce tritium. This paper focuses on tbe methodology adopted in tbe evaluation of doses from potential accidental releases of radioactive material from the LANSCE facility. Some results of the dose calculations are presented. Also discussed are the important features of an isotope screening process developed for this application to limit the number of consequence calculations.
Alumina (94 and 99.8% grade compositions) was brazed directly to itself with gold-based active brazing alloys (ABA's) containing vanadium additions of 1,2 and 3 weight percent. The effects of brazing conditions on the joint properties were investigated. Wetting behavior, interfacial reactions, microstructure, hermeticity and tensile strength were determined. Wetting was fair to good for the ABA and base material combinations. Microanalysis identified a discontinuous Al-V-O spinel reaction product at the alumina-braze interface. Tensile strength results for 94% alumina were uniformly good and generally not sensitive to the vanadium concentration, with tensile values of 85-105 MPa. There was more variability in the 99.8% alumina strength results, with values ranging from 25-95 MPa. The highest vanadium concentration (3 wt. %) yielded the highest joint strength for the brazed 99.8% alumina. Failures in the 99.8% alumina samples occurred at the braze-alumina interface, while the 94% alumina specimens exhibited fracture of the ceramic substrate.
This paper presents a viscoplasticity model taking into account the effects of change in grain or phase size and damage on the characterization of creep damage in 60Sn-40Pb solder. Based on the theory of damage mechanics, a two-scalar damage model is developed for isotropic materials by introducing the free energy equivalence principle. The damage evolution equations are derived in terms of the damage energy release rates. In addition, a failure criterion is developed based on the postulation that a material element is said to have ruptured when the total damage accumulated in the element reaches a critical value. The damage coupled viscoplasticity model is discretized and coded in a general-purpose finite element program known as ABAQUS through its user-defined material subroutine UMAT. To illustrate the application of the model, several example cases are introduced to analyze, both numerically and experimentally, the tensile creep behaviors of the material at three stress levels. The model is then applied to predict the deformation of a notched specimen under monotonic tension at room temperature (22 C). The results demonstrate that the proposed model can successfully predict the viscoplastic behavior of the solder material.
Alliance for Photonic Technology/Industrial Quarterly
Dawes Jr., William R.
The US Department of Energy and its national laboratories are a major employer of scientists and engineers and consequently have a strong interest in the development and training of a qualified pool of employment candidates. For many years the DOE and its national laboratories have supported education activities devoted to increasing the number and quality of science and engineering graduates. This is part of the DOE mission because of the critical national need for scientists and engineers and the recognized deficiencies in the education system for science and mathematics training. Though funding support for such activities has waxed and waned, strong education programs have survived in spite of budget pressures. This paper reviews a few of the education programs presently supported at Sandia by the Science and Technology Outreach Department. The US DOE Defense Programs Office and Sandia National Laboratories provide financial support for these education activities.
The US DOE, with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, New Mexico. Performance assessment analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for releases of radionuclides from the disposal system. In modeling long-term brine releases, subsequent to a drilling event, potential migration pathways through the permeable layers of rock above the Salado formation were analyzed. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been earned out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for {sup 241}Pu and {sup 241}Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft--AIS). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer {sup 22}Na. Elution experiments carried out over periods of a few days with tracers {sup 232}U and {sup 239}Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers {sup 241}Pu and {sup 241}Am were attempted, but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species {sup 241}Pu and {sup 241}Am after a period of brine flow, non-destructive and destructive analyses of one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the {sup 241}Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the {sup 241}Pu was dispersed with a very high apparent retardation value. The {sup 241}Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported.
This paper presents an open-loop control method for suppressing payload oscillation or swing caused by operator commanded maneuvers in rotary boom cranes and the method is experimentally verified on a one-sixteenth scale model of a Hagglunds shipboard crane. The crane configuration consists of a payload mass that swings like a spherical pendulum on the end of a lift-line which is attached to a boom capable of hub rotation (slewing) and elevation (luffing). Positioning of the payload is accomplished through the hub and boom angles and the load-line length. Since the configuration of the crane affects the excitation and response of the payload, the swing control scheme must account for the varying geometry of the system. Adaptive forward path command filters are employed to remove components of the command signal which induce payload swing.
Atom-by-atom and concerted hopping of ad-dimers on the open (100) surface of fcc metals are studied by means of density-functional calculations. The adatom interaction is relatively short-ranged, and beyond next-nearest neighbors ad-dimers are effectively dissociated. Diffusion takes place by a simple shearing process, favored because it maximizes adatom coordination at the transition state This holds for Al, Au, and Rh, and is likely a general result because geometrical arguments dominate over details of the electronic structure.
We demonstrate high critical current density superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} (Tl-2212) using LaNiO{sub 3} (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J{sub c} (5K, H=0) than films grown directly on a bare LaAlO{sub 3} substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J{sub c} at all temperatures and fields compared to those grown on bare LaAlO{sub 3}, correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications.
The set of laws developed and presented here is by no means exhaustive. Techniques have been present to aid in the development of additional scaling laws and to combine these and other laws to produce additional useful relationships. Some of the relationships produced here have yielded perhaps surprising results. Examples include the fifth order scaling law for electromagnetic motor torque and the zero order scaling law for capacitive motor power. These laws demonstrate important facts about actuators in small-scale systems. The primary intent of this introduction into scaling law analysis is to provide needed tools to examine possible areas of the research in small-scale systems and direct research toward more fruitful areas. Numerous examples have been included to show the validity of developing scaling laws based on first principles and how real world systems tend to obey these laws even when many other variables may potentially come into play. Development of further laws may well serve to provide important high-level direction to the continued development of small-scale systems.
By studying model polymeric networks which only differ in their connectivity, the connectivity is shown to strongly control the stress-strain response and failure modes. The sequence of molecular structural deformations that lead to failure are strongly dependent upon the network connectivity. A set of ideal, ordered networks are constructed to manipulate the deformation sequence to achieve a variety of adhesive qualities. Compared to random, dynamically formed networks, these ideal networks can be made to have either much larger or smaller failure stresses and strains. Unlike the random networks, the failure stress of an ideal network can be made close to the ideal stress equal to breaking all bonds to the substrate. By varying the number of bonds to the surface, the failure mode can be controlled to be either adhesive or cohesive.
The mission of international cooperation is defined in the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Ways and means of implementation were the subject of discussion during the International Cooperation Workshop held in Vienna in November 1998, and during the Regional Workshop for CTBTO International Cooperation held in Cairo, Egypt in June 1999. In particular, a database of ''Scientific and Technical Meetings Directly or Indirectly Related to CTBT Verification-Related Technologies'' was developed by the CTBTO PrepCom/PTS/International Cooperation section and integrated into the organization's various web sites in cooperation with the U.S. Department of Energy CTBT Research and Development Program. This database, the structure and use of which is described in this paper/presentation is meant to assist the CTBT-related scientific community in identifying worldwide expertise in the CTBT verification-related technologies and should help experts, particularly those of less technologically advanced States Signatories, to strengthen contacts and to pursue international cooperation under the Tredy regime. Specific opportunities for international cooperation, in particular those provided by active participation in the use and further development of this database, are presented in this paper and/or presentation.
A novel type of glass made with a double ion exchange process is more reliable and fractures in a unique manner compared to glass currently available in the market. The novel glass is unique because it disintegrates into a powder instead of fracturing into shards and splinters, and it fails over a very narrow range of stresses. Potential applications for this glass include using it in removable valves because the powdered glass does not produce obstructions when it breaks, and in other applications that require safety glass. A 20,000-psi MTS pressure system was used to determine the possible techniques for pressure testing the strength of a collection of disk-shaped glass samples. Ordinary (i.e., not ion exchanged) glass samples, 0.962 inches in diameter and 0.07 inches thick, were fractured with linearly increasing pressures to determine the best methods. The best method for testing novel glass samples, with the same size and shape as the ordinary glass, will be implemented. The final results of this ongoing project will be used to ascertain if the novel glass is suitable for potential applications.
Shyr, Lih-Jenn; Neuhauser, Sieglinde; Mills, Scott; Massey, Charles
There is a growing interest in understanding the potential consequences of malevolent acts against shipments of nuclear waste and/or material. Recently, Sandia National Laboratories (SNL) conducted a study' to evaluate the potential source terms available for release in a sabotage event for spent fuel shipments. Using these source terms, we developed an approach to assess the potential radiological consequences of the hypothesized events and to compare them to consequences of transportation accidents involving the same types of shipments. Our analysis showed that there could be orders of magnitude differences in consequence for urban, suburban, and rural events. Sabotage consequences could be orders of magnitude higher than those of transportation accidents with a probability of 10{sup {minus}12} or higher and be similar to events with a probability less than 10{sup {minus}12}. Also, explosive-induced buoyancy would disperse the source further out than a non-buoyant release in a transportation accident, which, therefore, would have a higher dose near the release point.
Polymerization of organotrialkoxysilanes is a convenient method for introducing organic functionality into hybrid organic-inorganic materials. However, not much is known about the effects of the organic substituent on the porosity of the resulting xerogels. In this study, we prepared a series of polysilsesquioxane xerogels from organotrialkoxysilanes, RSi(OR{sup 1}){sub 3}, with different organic groups (R = H, Me, Et dodecyl, hexadecyl, octadecyl, vinyl, chloromethyl, (p-chloromethyl) phenyl, cyanoethyl). Polymerizations of the monomers were carried out under a variety of conditions, varying monomer concentration, type of catalyst, and alkoxide substituent. The effect of the organic substituent on the sol-gel process was often dramatic. In many cases, gels were formed only at very high monomer concentration and/or with only one type of catalyst. All of the gels were processed as xerogels and characterized by scanning electron microscopy and nitrogen sorption porosimetry to evaluate their pore structure.
A new test methodology is described which allows access to loading rates that lie between split Hopkinson bar and shock-loading techniques. Gas gun experiments combined with velocity interferometry techniques have been used to experimentally determine the intermediate strain-rate loading behavior of Coors AD995 alumina and Cercom silicon-carbide rods. Graded-density materials have been used as impactors; thereby eliminating the tension states generated by the radial stress components during the loading phase. Results of these experiments demonstrate that the time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod. This allows access to intermediate loading rates over 5 x 10{sup 3}/s to a few times 10{sup 4}/s.
Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, a nationally important Strategic Petroleum Reserve (SPR) storage occurs in large cavern arrays in some of these domes. Although caverns have been operated economically for these many years, these caverns have a range of relatively poorly understood behaviors, involving creep closure fluid loss and damage from salt falls. It is certainly possible to postulate that many of these behaviors stem from geomechanical or deformational aspects of the salt response. As a result, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable importance. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of the limited non-steady state data to give a bound, or an approach to steady state, as an estimate of the steady state behavior of a given domal salt. This permitted the analysis of sparse creep databases for domal salts. It appears that a shortcoming of the steady state analysis was in masking some of the salt material differences. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on the integration of the Multimechanism-Deformation (M-D) creep constitutive model to fit the transient response. This integration process essentially permits definition of the material sensitive parameters of the model, while those parameters that are either constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Creep characteristics, as defined by the transient analysis of the creep rate, are related quantitatively to the volume loss creep rate of the caverns. This type of understanding of the domal material creep response already has pointed to the possibility of establishing various distinct material spines within a given dome. Furthermore, if the creep databases for domal salts can be expanded, one could expect additional definition of domal geology and structure.
Statistical concepts, methods, and tools are often used in the implementation of statistical thinking. Unfortunately, statistical tools are all too often misused by not applying them in the context of statistical thinking that focuses on processes, variation, and data. The consequences of this misuse may be ''data torturing'' or going beyond reasonable interpretation of the facts due to a misunderstanding of the processes creating the data or the misinterpretation of variability in the data. In the hope of averting future misuse and data torturing, examples are provided where the application of common statistical tools, in the absence of statistical thinking, provides deceptive results by not adequately representing the underlying process and variability. For each of the examples, a discussion is provided on how applying the concepts of statistical thinking may have prevented the data torturing. The lessons learned from these examples will provide an increased awareness of the potential for many statistical methods to mislead and a better understanding of how statistical thinking broadens and increases the effectiveness of statistical tools.
This article summarizes our investigations of tethered chain systems using Langmuir monolayer of polydimethysiloxane-poly styrene (PDMS-PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension lower or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (SIGMA) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (SIGMA < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong-stretching limit invoked in analytical SCF and scaling theories is not valid over this Z range. On the other hand, over a large portion of this range (SIGMA < 5) tethered layers are well described by a renormalization group theory addressing weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This apparently nonequilibrium effect is attributed to steric interactions and limited lateral interpenetration. This effect may explain several outstanding discrepancies regarding the adsorption of end-functionalized chains and diblock copolymers onto solid surfaces.
The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.
Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.
Two and three electrode impedance measurements were made on 18650 Li-ion cells at different QB temperatures ranging from 35 C to {minus}40 C. The ohmic resistance of the cell is nearly constant the temperature range studied although the total cell impedance increases by an order of magnitude in the same temperature range. In contrast to what is commonly believed, we show from our three-electrode impedance results that, the increase in cell impedance comes mostly from the cathode and not from the anode. Further, the anode and cathode contribute to both the impedance loops (in the NyQuist plot).
XPS studies have been carried out on sputter deposited copper on a substantially hydroxylated {alpha}-Al{sub 2}O{sub 3}(0001) (sapphire) surface under ultra-high vacuum (UHV) conditions. XPS-derived Cu uptake curves show a sharp change in slope at a coverage of 0.35 monolayer (on a Cu/O atomic basis), indicative of initial layer-by-layer growth. CU(LMM) lineshape data indicate that, prior to the first break in the curve, Cu is oxidized to Cu(I). At higher coverages, metallic CU(0) is. observed. These data agree with first principles theoretical calculations, indicating that the presence of ad-hydroxyl groups greatly enhances the binding of Cu to bulk sapphire surfaces, stabilizing Cu(I) adatoms over two-dimensional metallic islands. In the absence of hydroxylation, calculations indicate significantly weaker Cu binding to the bulk sapphire substrate and non-wetting. Calculations also predict that at Cu coverages above 1/3 monolayer (ML), Cu-Cu interactions predominate, leading to Cu(0) formation. These results are in excellent agreement with experiment. The ability of surface hydroxyl groups to enhance binding to alumina substrates suggests a reason for contradictory experimental results reported in the literature for Cu wetting of alumina.
Quartz crystal microbalance techniques and in situ spectroscopic ellipsometry are used to probe the structure-dependent intrinsic viscoelastic properties of self-assembled CH{sub 3}(CH{sub 2}){sub 8}SH alkanethiol monolayer adsorbed from the gas phase onto Au(111)-textured substrates. Physisorbed molecules, mixed chemisorbed-fluid/solid phases and solid-phase domain boundaries make sequentially dominant contributions to the measured energy dissipation in the growing monolayer. Deviations from Langmuir adsorption kinetics reveal a precursor-mediated adsorption channel. These studies reveal the impact of structural heterogeneity in tribological studies of monolayer lubricants.
In this paper, we include for discussion three topics of current interest in metal oxide surface science. Using first principles density functional theory (DFT) [1] calculations, we have investigated: (1) the atomic-scale structure of experimentally-relevant ultrathin alumina films, (2) the role of common point defects in metal island nucleation on oxide terraces, and (3) the growth and morphology of metals on oxide surfaces which have high concentrations of a common impurity.
Pressure studies have provided new insights into the physics of compositionally-disordered ABO{sub 3} oxide relaxors. Specifically results are presented and discussed on a pressure-induced ferroelectric-to-relaxor crossover phenomenon, the continuous evolution of the energetics and dynamics of the relaxation process, and the interplay between pressure and electric field in determining the dielectric response.
We report propane dehydrogenation behavior of catalysts prepared using two novel synthesis strategies that combine inverse micelle Pt nanocluster technology with silica and alumina sol-gel processing. Unlike some other sol-gel catalyst preparations. Pt particles in these catalysts are not encapsulated in the support structure and the entire Pt particle surface is accessible for reaction. Turnover frequencies (TOF) for these catalysts are comparable to those obtained over Pt catalysts prepared by traditional techniques such as impregnation, yet the resistance to deactivation by carbon poisoning is much greater in our catalysts. The deactivation behavior is more typical of traditionally prepared PtSn catalysts than of pure Pt catalysts.
The effect of higher-order corrections to the Born approximation is studied for the previously obtained giant conductance enhancement in tunnel-coupled double quantum wires in a parallel magnetic field. The relative correction is found to be significant and depends on various effects such as the magnetic field, electron and impurity densities, impurity positions, symmetric and asymmetric doping profiles, and center barrier thickness.
Fluids adsorbed near surfaces, macromolecules, and in porous materials are inhomogeneous, inhibiting spatially varying density distributions. This inhomogeneity in the fluid plays an important role in controlling a wide variety of complex physical phenomena including wetting, self-assembly, corrosion, and molecular recognition. One of the key methods for studying the properties of inhomogeneous fluids in simple geometries has been density functional theory (DFT). However, there has been a conspicuous lack of calculations in complex 2D and 3D geometries. The computational difficulty arises from the need to perform nested integrals that are due to nonlocal terms in the free energy functional These integral equations are expensive both in evaluation time and in memory requirements; however, the expense can be mitigated by intelligent algorithms and the use of parallel computers. This paper details our efforts to develop efficient numerical algorithms so that no local DFT calculations in complex geometries that require two or three dimensions can be performed. The success of this implementation will enable the study of solvation effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in colloidal suspensions.
In a previous companion paper, we presented the details of our algorithms for performing nonlocal density functional theory (DFT) calculations in complex 2D and 3D geometries. We discussed scaling and parallelization, but did not discuss other issues of performance. In this paper, we detail the precision of our methods with respect to changes in the mesh spacing. This is a complex issue because given a Cartesian mesh, changes in mesh spacing will result in changes in surface geometry. We discuss these issue using a series of rigid solvated polymer models including square rod polymers, cylindrical polymers, and bead-chain polymers. By comparing the results of the various models, it becomes clear that surface curvature or roughness plays an important role in determining the strength of structural solvation forces between interacting solvated polymers. The results in this paper serve as benchmarks for future application of these algorithms to complex fluid systems.
This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.
Ashby, Carol I.H.; Baca, Albert G.; Chang, P.C.; Hafich, M.J.; Hammons, B.E.; Zavadil, Kevin R.
A new air-stable electronic surface passivation for GaAs and other III-V compound semiconductors that employs sulfur and a suitable metal ion, e.g., Zn, and that is robust towards plasma dielectric deposition has been developed. Initial improvements in photoluminescence are twice that of S-only treatments and have been preserved for >11 months with SiO{sub x}N{sub y} dielectric encapsulation. Photoluminescence and X-ray photoelectron spectroscopies indicate that the passivation consists of two major components with one being stable for >2 years in air. This process improves heterojunction bipolar transistor current gain for both large and small area devices.
Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.
Low temperature electrical performance characteristics of A and T, Moli, and Panasonic 18650 Li-ion cells are described. Ragone plots of energy and power data of the cells for different temperatures from 25 C to {minus}40 C are compared. Although the electrical performance of these cells at and around room temperature is respectable, at temperatures below 0 C the performance is poor. For example, the delivered power and energy densities of the Panasonic cells at 25 C are {approximately}800 W/l and {approximately}100 Wh/l respectively and those at {minus}40 C are <10 W/l and {approximately}5 Wh/l. In order to identify the source for this poor performance at subambient temperatures, both 2- and 3-electrode impedance studies were made on these cells. The 2-electrode impedance data suggests that the cell ohmic resistance remains nearly constant from 25 C to {minus}20 C but increases modestly at {minus}40 C while the overall cell impedance increases by an order of magnitude over the same temperature range. The 3-electrode impedance data of the A and T cells show that the increase in cell resistance comes mostly from the cathode electrolyte interface and very little either from the anode electrolyte interface or from the ohmic resistance of the cell. This suggests that the poor performance of the cells comes mainly from the high cathode/electrolyte interfacial impedance.
Francke, Chris T.; Hansen, Frank D.; Knowles, M.K.; Patchet, Stanley J.; Rempe, Norbert T.
The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose.
The purpose of this panel is to present different perspectives and opinions regarding the issues surrounding why software should or shouldn't be entrusted with critical (high consequence) functionality.
Measurements of dielectric breakdown during high-field electrical stress are typically performed at or near room temperature via constant voltage or current stress methods. In this summary they explore whether useful information might also be obtained by performing current measurements during a temperature ramp at high electric field.
High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.
We gain-switch flared waveguide lasers to obtain 14.5 W peak powers and 0.5 nJ pulse energies with laser structures compatible with the generation of diffraction-limited beams. The results are in excellent agreement with a microscopic laser model.
The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.
Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.
This paper will focus on the required growth conditions for self-doping metals and the various lifetime issues. Recent results for a novel self-doping metal system will be discussed briefly.
Back contact solar cells hold significant promise for increased performance in photovoltaics for the near future. Two major advantages which these cells possess are a lack of grid shading loss and coplanar interconnection. Front contacted cells can have up to 10% shading loss when using screen printed metal grids. A front contact cell must also use solder connections which run from the front of one cell to the back of the next for series interconnection. This procedure is more difficult to automate than the case of co-planar contacts. The back contact cell design is not a recent concept. The earliest silicon solar cell developed by Bell Labs was a back contact device. There have been many design modifications to the basic concept over the years. To name a few, there is the Interdigitated Back Contact (IBC) cell, the Stanford Point contact solar cell, the Emitter Wrap Through (EWT), and its many variations. A number of these design concepts have demonstrated high efficiency. The SunPower back contact solar cell holds the efficiency record for silicon concentrator cells. The challenge is to produce a high efficiency cell at low cost using high throughput techniques. This has yet to be achieved with a back contact cell design. The focus of this paper will be to review the relevant features of back contact cells and progress made toward the goal of a low cost version of this device.
The Statistics and Human Factors Department at SNL has evolved as the Labs' mission has evolved from engineering designs for the non-nuclear parts of nuclear weapons, including the safety and security components, to a multi-program lab focusing on national security. Twenty years ago their client base was the engineers, scientists, and managers of the nuclear weapon stockpile program, at Sandia and other facilities within the DOE complex. Client relationships developed over years of association. Components and systems were assigned to statisticians so that they could develop a knowledge base in that area. Because of the many different component types and system designs in the stockpile, they typically juggled five or six statistical projects at a time. project participation other than statistical consulting was limited. They rarely had the time to lead project teams, and any skills or inclinations in that direction were often undeveloped. This paper describes a (hit-or-miss) selection of some early and recent efforts. This paper also presents their self-assessment metrics and their external assessment metrics. These metrics were selected to track the business aspects of the department; they are systematic (not hit-or-miss). These two types of histories should allow them to judge whether we're doing the right things, and also doing things right.
Methods are discussed for computing the sensitivity of field variables to changes in material properties and initial/boundary condition parameters for heat transfer problems. The method we focus on is termed the ''Sensitivity Equation Method'' (SEM). It involves deriving field equations for sensitivity coefficients by differentiating the original field equations with respect to the parameters of interest and numerically solving the resulting sensitivity field equations. Uncertainty in the model parameters are then propagated through the computational model using results derived from first-order perturbation theory; this technique is identical to the methodology typically used to propagate experimental uncertainty. Numerical results are presented for the design of an experiment to estimate the thermal conductivity of stainless steel using transient temperature measurements made on prototypical hardware of a companion contact conductance experiment. Comments are made relative to extending the SEM to conjugate heat transfer problems.
AerMet 100 is a high strength, high fracture toughness alloy designed for use in aerospace applications. In previous work the welding behavior of this alloy has been evaluated, and it has been shown that a softened region in the heat-affected zone (HAZ) is a principal feature of the weld zone. A model for this softening, based on classical theories of precipitate coarsening and isothermal softening data, was developed and found to provide a reasonable description for weld thermal cycle simulation (Gleeble) experiments. Recent work has shown, however, that softening in real welds is not always well predicted by this model, so that additional effects, which are not captured in conventional Gleeble thermal cycle simulations must be addressed. In particular, the stresses associated with real weld HAZ's may modify the softening kinetics. In the current work, Gleeble simulations in both stress-free and stressed conditions have been conducted and the kinetics compared. The accuracy of the thermal model predictions have also been considered regarding their impact on estimated hardness values.
The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary.
This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V {approximately} 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the {pi}-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%.
The incorporation of vacancies, H atoms, and sp{sup 2} bond defects into single-crystal homoepitaxial (100)(2x1)- and(111)-oriented CVD diamond was simulated by atomic-scale kinetic Monte Carlo. Simulations were performed for substrate temperatures from 600 C to 1200 C with 0.4% CH{sub 4} in the feed gas, and for 0.4% to 7% CH{sub 4} feeds with a substrate temperature of 800 C. The concentrations of incorporated H atoms increase with increasing substrate temperature and feed gas composition, and sp{sup 2} bond trapping increases with increasing feed gas composition. Vacancy concentrations are low under all conditions. The ratio of growth rate to H atom concentration is highest around 800-900 C, and the growth rate to sp{sup 2} ratio is maximum around 1% CH{sub 4}, suggesting that these conditions are ideal for economical diamond growth under the simulated conditions.
Under both static and common MAS conditions (< 15 kHz) the question of residual X-Y heteronuclear decoupling can become a complicating factor in the analysis of various NMR results. In our lab the impact of {sup 31}P-{sup 23}Na dipolar coupling on the observed {sup 23}Na M{sub 2} relaxation for a series of sodium phosphate glasses was recently investigated by employing continuous wave {sup 31}P decoupling during the entire pulse sequence. Initially these efforts were complicate by the inability to provide a gating pulse during the data acquisition using the standard Bruker nomenclature, go=2, for the acquisition loop. A pulse sequence to overcome these restrictions is given below. Our AMX400 instrument is configured with a 3 channel MCI, but utilizes a linear AMT amplifier on the 3rd channel (requiring gating pulse via the C4 program call during the entire time it is on). The standard acquisition loop has been replaced by direct adc and aq commands for data acquisition. Unlike the go=2 statement which does not allow a C4 gating command to be included, these individual acquisition commands can all include distinct C4 gating.
ZX is a new z-pinch accelerator planned as the next generation z-pinch driver at SNL, and as an intermediate step towards X-1. It is planned to drive either a single 50 MA z-pinch load, or two 25 to 30 MA z pinches. Three designs for the ZX accelerator are presented. All require 7 to 8 MV at the insulator stack to drive the z-pinch load to implosion in 100 to 120 ns. Two of the designs are based on the Z accelerator, and use water-line technology; a transit-time-isolated water adder, and a water transformer. The third design uses inductive-voltage adders in water. They also describe a low-inductance insulator stack design that helps minimize voltage requirements. This design is evaluated for water and vacuum break-down using JCM, THM, and magnetic-flashover-inhibition criteria.
The Z-accelerator at the Sandia National Laboratories (SNL) was modified in 1996 to deliver a 20 MA pulse to a z-pinch load in 100 ns. The pulsed-power driver is a 36-module waterline accelerator. Each waterline contains four self-break switches as part of the pulse-forming section. A study was conducted to investigate the effects of increasing the capacitance of the waterline switches on the shape of the electrical prepulse at the load. Past studies have shown that increasing the prepulse at the z-pinch load increases the x-ray output power. In this study, one set of switches with its surrounding waterline hardware was modeled in 3-D and capacitance calculated using the electrostatic code, COULOME. The capacitance values were used in a SCREAMER model of the Z-accelerator. SCREAMER an SNL developed, lumped-element circuit code was used to calculate the time-dependent current waveforms delivered to the z-pinch load. The design was changed and a new capacitance matrix and output waveforms were calculated. This paper presents the results of the COULOMB 3-D modeling, and the SCREAMER circuit-model analyses.
A suite of plate loading tests has recently been conducted by Sandia National Laboratories at the Exploratory Studies Facility at Yucca Mountain, Nevada. Fielding of these in situ tests as well as other approaches undertaken for the determination of rock mass modulus are described. The various methodologies are evaluated and their data compared. Calculation by existing empirical methods and numerical modeling are compared to each other as well as to field data.
Stress measurement test chips were flip chip assembled to organic BGA substrates containing micro-vias and epoxy build-up interconnect layers. Mechanical degradation observed during temperature cycling was correlated to a damage theory developed based on 3D finite element method analysis. Degradation included die cracking, edge delamination and radial fillet cracking.
We discuss the design and testing of a miniaturized explosives preconcentrator that can be used to enhance the capabilities of man-portable field detection systems, such as those based on ion mobility spectrometry (IMS). The preconcentrator is a smaller version of a similar device that was developed recently at Sandia National Laboratories for use in a trace detection portal that screens personnel for explosives. Like its predecessor, this preconcentrator is basically a filtering device that allows a small amount of explosive residue in a large incoming airflow to be concentrated into a much smaller air volume via adsorption and resorption, prior to delivery into a chemical detector. We discuss laboratory testing of this preconcentrator interfaced to a commercially available IMS-based detection system, with emphasis on the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX). The issues investigated include optimization of the preconcentrator volume and inlet airflow, the use of different types of adsorbing surfaces within the preconcentrator, Wd preconcentrator efficiency and concentration factor. We discuss potential field applications of the preconcentrator, as well as avenues for further investigations and improvements.
A portable, autonomous, hand-held chemical laboratory ({mu}ChemLab{trademark}) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.
During the development and qualification of a radiation-hardened, 0.5 {micro}m shallow trench isolation technology, several yield-limiting defects were observed. The 256K (32K x 8) static-random access memories (SRAMs) used as a technology characterization vehicle had elevated power supply current during wafer probe testing. Many of the die sites were functional, but exhibited quiescent power supply current (I{sub DDQ}) in excess of 100 {micro}A, the present limit for this particular SRAM. Initial electrical analysis indicated that many of the die sites exhibited unstable I{sub DDQ} that fluctuated rapidly. We refer to this condition as ''jitter.'' The I{sub DDQ} jitter appeared to be independent of temperature and predominantly associated with the larger 256K SRAMs and not as prevalent in the 16K SRAMs (on the same reticle set). The root cause of failure was found to be two major processing problems: salicide bridging and stress-induced dislocations in the silicon islands.
As information systems have become distributed over many computers within the enterprise, managing those applications has become increasingly important. This is an emerging area of work, recognized as such by many large organizations as well as many start-up companies. In this report, we present a summary of the move to distributed applications, some of the problems that came along for the ride, and some specific examples of the tools and techniques we have used to analyze distributed applications and gain some insight into the mechanics and politics of distributed computing.
A description and user's guide are given for a computer program, PATTRN, developed at Sandia National Laboratories for use in sensitivity analyses of complex models. This program is intended for use in the analysis of input-output relationships in Monte Carlo analyses when the input has been selected using random or Latin hypercube sampling. Procedures incorporated into the program are based upon attempts to detect increasingly complex patterns in scatterplots and involve the detection of linear relationships, monotonic relationships, trends in measures of central tendency, trends in measures of variability, and deviations from randomness. The program was designed to be easy to use and portable.
This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.
A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle velocity at the showerhead exit as a function of showerhead geometry, flow rate, and gas and particle properties. The particle showerhead-exit velocity is next used as an initial condition for particle transport between the plates to determine whether the particle deposits on the wafer, as a function of shower-head-exit particle velocity, the plate separation, flow rate, and gas and particle properties. Based on the numerical analysis, recommendations of best practices are presented that should help tool operators and designers reduce particle deposition in real tools. These guidelines are not intended to replace detailed calculations, but to provide the user with a general feel for inherently-clean practices.
This LDRD project explored the fundamental physics of a new class of photonic materials, photonic bandgap structures (PBG), and examine its unique properties for the design and implementation of photonic devices on a nano-meter length scale for the control and confinement of light. The low loss, highly reflective and quantum interference nature of a PBG material makes it one of the most promising candidates for realizing an extremely high-Q resonant cavity, >10,000, for optoelectronic applications and for the exploration of novel photonic physics, such as photonic localization, tunneling and modification of spontaneous emission rate. Moreover, the photonic bandgap concept affords us with a new opportunity to design and tailor photonic properties in very much the same way we manipulate, or bandgap engineer, electronic properties through modern epitaxy.
A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.
The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.
This report presents an implementation of the Berlekamp-Massey linear feedback shift-register (LFSR) synthesis algorithm in the C programming language. Two pseudo-code versions of the code are given, the operation of LFSRs is explained, C-version of the pseudo-code versions is presented, and the output of the code, when run on two input samples, is shown.
Decontamination of radioactive contaminated stainless steel using the ESR process is investigated by conducting thermophysical and thermochemical laboratory studies on the slag. The ESR base slag investigated in this research project is 60wt%CaF{sub 2}-20wt%CaO-20wt%Al{sub 2}O{sub 3}. In this report, we present the data obtained to date on relevant slag properties, capacity to incorporate the radioactive contaminant (using CeO{sub 3}) as surrogate, simulant for PUO{sub 2} and UO{sub 2}, slag-metal partition coefficient, volatilization rate and volatile species, viscosity, electrical conductivity and surface tension as a function of temperature. The impact of these properties on the ESR decontamination process is presented.
A theoretical analysis has been completed for a proposed induction logging tool designed to yield data which are used to generate three dimensional images of the region surrounding a well bore. The proposed tool consists of three mutually orthogonal magnetic dipole sources and multiple 3 component magnetic field receivers offset at different distances from the source. The initial study employs sensitivity functions which are derived by applying the Born Approximation to the integral equation that governs the magnetic fields generated by a magnetic dipole source located within an inhomogeneous medium. The analysis has shown that the standard coaxial configuration, where the magnetic moments of both the source and the receiver are aligned with the axis of the well bore, offers the greatest depth of sensitivity away from the borehole compared to any other source-receiver combination. In addition this configuration offers the best signal-to-noise characteristics. Due to the cylindrically symmetric nature of the tool sensitivity about the borehole, the data generated by this configuration can only be interpreted in terms of a two-dimensional cylindrical model. For a fill 3D interpretation the two radial components of the magnetic field that are orthogonal to each other must be measured. Coil configurations where both the source and receiver are perpendicular to the tool axis can also be employed to increase resolution and provide some directional information, but they offer no true 3D information.
The understanding and manipulation of the point defect structure in oxide glasses have been critical to the enhanced performance and reliability of optical-fiber-based, photosensitive photonic devices that currently found widespread application in telecommunications and remote sensing technologies. We provide a brief review of past research investigating photosensitive mechanisms in germanosilicate glasses, the primary material system used in telecommunications fibers. This discussion motivates an overview of ongoing work within our laboratories to migrate photosensitive glass technologies to a planar format for integrated photonic applications. Using reactive-atmosphere, RF-magnetron sputtering, we have demonstrated control of glass defect structure during synthesis, thereby controlling both the material photosensitivity (i. e. dispersion and magnitude of the refractive index change) and its environmental stability.
We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.
Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, we used FIB technology to prepare an IC for inspection of voided metal interconnects (''lines'') and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscope (SEM). Sequential cross sections of individual voided vias enabled us to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping us identify the IC process steps that needed to be changed.
As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effect desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.
We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.
Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, they used FIB technology to prepare an IC for inspection of voided metal interconnects (lines) and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscopy (SEM). Sequential cross sections of individual voided vias enabled them to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping to identify the IC process steps that needed to be changed.
Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing, and cell design that may yield cell and module performance improvements that are both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.
There has been considerable interest in developing dry processes which can effectively replace wet processing in the manufacture of large area photovoltaic devices. Environmental and health issues are a driver for this activity because wet processes generally increase worker exposure to toxic and hazardous chemicals and generate large volumes of liquid hazardous waste. Our work has been directed toward improving the performance of screen-printed solar cells while using plasma processing to reduce hazardous chemical usage.
The joint USNRC/CEC consequence uncertainty study was chartered after the development of two new probabilistic accident consequence codes, MACCS in the U.S. and COSYMA in Europe. Both the USNRC and CEC had a vested interest in expanding the knowledge base of the uncertainty associated with consequence modeling, and teamed up to co-sponsor a consequence uncertainty study. The information acquired from the study was expected to provide understanding of the strengths and weaknesses of current models as well as a basis for direction of future research. This paper looks at the elicitation process implemented in the joint study and discusses some of the uncertainty distributions provided by eight panels of experts from the U.S. and Europe that were convened to provide responses to the elicitation. The phenomenological areas addressed by the expert panels include atmospheric dispersion and deposition, deposited material and external doses, food chain, early health effects, late health effects and internal dosimetry.
We generally use large-scale hydrocodes to study the dynamic response of targets to influence pulsed radiation loads. However, for many applications where the desired solution does not require a detailed specification of pressure- or velocity-time histories, there are simple analytic approaches that can yield surprisingly accurate results. Examples include determining either the final velocity of a radiation-driven flying plate or the impulse delivered to a structural element. These methods are all based on relatively straightforward use of conservation of mass and momentum, but they typically need one scaling-law parameter. In this context, short pulse means short compared to the characteristic time of the desired response, which allows for the phenomena to be essentially uncoupled. High fluence means that the input energy is great enough to yield vaporization or blowoff of one or more portions of the configuration. We discuss some of these methods, give examples, and suggest limitations and criteria for their use.