Publications

7 Results

Search results

Jump to search filters

Coupled Resonator Vertical Cavity Laser Diode

Applied Physics Letters

Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.; Hou, Hong Q.; Geib, Kent M.

We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.

More Details

Hydrogen implanted 1.3 {micro}m vertical cavity surface-emitting lasers with dielectric and wafer-boned GaAs/AlAs mirrors

Hou, Hong Q.

A 1.3 {micro}m wavelength vertical-cavity surface-emitting laser (VCSEL) containing proton implanted isolation regions and a dielectric top mirror and a wafer-bonded GaAs/AlAs bottom mirror was fabricated. A room temperature pulsed threshold current density of 1.13 kA/cm{sup 2} and a threshold current of 2 mA have been demonstrated.

More Details

Highly uniform and reproducible visible to near-infrared vertical-cavity surface-emitting lasers grown by MOVPE

Hou, Hong Q.

The authors present the growth and characterization of vertical-cavity surface emitting lasers (VCSELs) from visible to near-infrared wavelength grown by metalorganic vapor phase epitaxy. Discussions on the growth issue of VCSEL materials include the control on growth rate and composition using an in situ normal-incidence reflectometer, optimization of ultra-high material uniformity, and comprehensive p- and n-type doping study in AlGaAs by CCl{sub 4} and Si{sub 2}H{sub 6} over the entire Al composition range. They will also demonstrate the recent achievements of selectively-oxidized VCSELs which include the first room-temperature continuous-wave demonstration of all-AlGaAs 700-nm red VCSELs, high-performance n-side up 850-nm VCSELs, and low threshold current and low-threshold voltage 1.06 {micro}m VCSELs using InGaAs/GaAsP strain-compensated quantum wells.

More Details

Anomalous normal mode oscillations in semiconductor microcavities

Hou, Hong Q.

Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

More Details

Stimulated emission from semiconductor microcavities

Hou, Hong Q.

Laser-like emissions from semiconductor microcavities at low temperature have attracted considerable attention recently because of the possibility of realizing a non-equilibrium condensate by using cavity-polaritons. In this paper the authors present experimental studies of optical properties of a microcavity near the lasing threshold. They show that the minimum lasing threshold is achieved when the cavity is tuned significantly below the exciton line center. By comparing emission spectra with reflectivity spectra, they also show that well-resolved doublet in the emission spectra near the lasing threshold are not associated with cavity-polaritons. These results suggest that laser-like emissions form the microcavity are due to conventional stimulated emission processes with exciton localization playing a significant role.

More Details

Multiple wavelength vertical-cavity surface-emitting laser arrays using surface-controlled MOCVD growth rate enhancement and reduction

Hou, Hong Q.

Multiple-wavelength VCSEL and photodetector arrays are useful for wavelength-multiplexed fiberoptic networks, and for optical crosstalk isolation in parallel, free-space interconnects. Multiple wavelength VCSEL arrays have been obtained by varying the growth rate using thermal gradients caused by a backside-patterned substrate, by growth enhancement on a patterned substrate, and by varying the cavity length through anodic oxidation and selective etching of the wafer. We show here for the first time both the enhancement and the reduction of the growth rate of the entire VCSEL structure on a topographically patterned substrate, and demonstrate the controlled variation of the lasing wavelengths of a VCSEL array over an extended spectral range.

More Details
7 Results
7 Results