Publications

3 Results

Search results

Jump to search filters

Engineered living materials for capture, conversion, and recycling technologies

Bachand, George B.; Rempe, Susan R.; Manginell, Monica M.; Coker, Eric N.; Chiang, Rong-An; Sharma, Arjun; Nardi, Isaac

Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale CO2 emissions from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides (NOx) and sulphur oxides (SOx). Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NOx and SOx concentrations. Furthermore, a loss of CA activity was observed only at high concentrations of NOx/SOx that possibly can be minimized with appropriate buffered solutions.

More Details

Biocompatible self-assembly of nano-materials for Bio-MEMS and insect reconnaissance

Brinker, C.J.; Sinclair, Michael B.; Timlin, Jerilyn A.; Cesarano, Joseph C.; Baca, Helen K.; Flemming, Jeb H.; Manginell, Monica M.; Dunphy, Darren R.; Brozik, Susan M.; Werner-Washburne, Margaret

This report summarizes the development of new biocompatible self-assembly procedures enabling the immobilization of genetically engineered cells in a compact, self-sustaining, remotely addressable sensor platform. We used evaporation induced self-assembly (EISA) to immobilize cells within periodic silica nanostructures, characterized by unimodal pore sizes and pore connectivity, that can be patterned using ink-jet printing or photo patterning. We constructed cell lines for the expression of fluorescent proteins and induced reporter protein expression in immobilized cells. We investigated the role of the abiotic/biotic interface during cell-mediated self-assembly of synthetic materials.

More Details

Integratible Process for Fabrication of Fluidic Microduct Networks on a Single Wafer

Matzke, C.M.; Ashby, Carol I.; Manginell, Monica M.; Griego, Leonardo G.; Wong, Chungnin C.

We present a microelectronics fabrication compatible process that comprises photolithography and a key room temperature SiON thin film plasma deposition to define and seal a fluidic microduct network. Our single wafer process is independent of thermo-mechanical material properties, particulate cleaning, global flatness, assembly alignment, and glue medium application, which are crucial for wafer fusion bonding or sealing techniques using a glue medium. From our preliminary experiments, we have identified a processing window to fabricate channels on silicon, glass and quartz substrates. Channels with a radius of curvature between 8 and 50 {micro}m, are uniform along channel lengths of several inches and repeatable across the wafer surfaces. To further develop this technology, we have begun characterizing the SiON film properties such as elastic modulus using nanoindentation, and chemical bonding compatibility with other microelectronic materials.

More Details
3 Results
3 Results