Global Chemists Code of Ethics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Chemical and Engineering News
Abstract not provided.
Abstract not provided.
Abstract not provided.
The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national research enterprise.
Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment.
Iron catalysts are particularly useful for Fischer-Tropsch (FT) synthesis when the H2 to CO ratio of the synthesis gas is low since iron exhibits water gas shift as well as FT activity. Iron catalysts are active for Fischer Tropsch synthesis only when in the carbide state. The active iron carbide catalyst has a 1-3 nm carbonaceous layer, which can only be found on the carbided iron catalyst (no carbonaceous material is found on iron oxide particles that maybe present). This paper will address the nature of the carbonaceous material that is required for product formation. The carbonaceous material is amorphous, does not require hydrogen to form, and is the starting material for FT products.
Materials Research Society Symposium - Proceedings
Mixed Metal Phospho-Sulfates were prepared and evaluated for use as acid catalysts via 2-methyl-2-pentene isomerization and o-xylene isomerization. Particular members of this class of materials exhibit greater levels of activity than sulfated zirconia as well as lower rates and magnitudes of deactivation. 31P MAS NMR has been used to examine the role of phosphorous in contributing to the activity and deactivation behavior of these materials, while powder X-ray diffraction, BET surface area, IR, and elemental analysis were used to characterize the bulk catalysts.
Studies in Surface Science and Catalysis
Recently a large effort has been put into identifying solid acid materials, particularly sulfated zirconia and other sulfated metal oxides, that can be used to replace environmentally hazardous liquid acids in industrial processes. We are studying a group of mixed metal phosphates, some of which have also been sulfated, for their catalytic and morphological characteristics. Zirconium and titanium are the metals used in this study and the catalysts are synthesized from alkoxide starting materials with H3PO4, H2O, and sometimes H2SO4 as gelling agents. The measurement of acidity was achieved by using the isomerization of an olefin as a model reaction. The phosphate stabilized the mixed metal sulfates, preventing them from calcining to oxides boosting their initial catalytic activity. The addition of sulfate prevented the formation of the catalytically inactive mixed metal pyrophosphates when calcined at high temperatures (>773 K). 1998 Elsevier Science B.V.
The primary purpose of this LDRD was to identify and optimize materials as solid acid catalysts for the replacement of environmentally hazardous liquid acids such as H{sub 2}SO{sub 4} and HF which are used as catalysts in both the petroleum and chemical industries. Liquid acids have significant safety, environmental and engineering difficulties associated with their use in process chemistry. Special equipment/materials need to be used with liquid acids. Hydrofluoric acid poses unique safety problems due to it insipid attack on skin and tissue as well as its tendency to plume and travel long distances as a plume when it is released in the atmosphere. Therefore, any time a solid acid catalyst can be used to replace a liquid acid in a processes step, significant environmental, safety, and financial gains can be realized. The majority of work in this LDRD was performed on novel mixed metal phosphates which are a new solid acid catalyst material. Primarily the model reaction, 2-methyl-2-pentene isomerization, was used to determine acidity. These materials were tested for their activity, their deactivation and their stability. In addition, some of the phosphate materials were synthesized using templates in order to try to form a three dimensional network material from these phosphates. The amorphous sulfated zirconium-titanium phosphates were more acidic, as measured by olefin isomerization, than sulfated zirconia. However, they showed some of the same failings as sulfated zirconia in that they deactivated quickly and lost sulfur in a reducing atmosphere. Certain of the mixed metal phosphates, particularly tantalum-containing phosphates, showed strong acidity compared to sulfated zirconia as measured by olefin isomerization reaction.
This report outlines the future technology needs of the Chemical Industry in the area of catalysis and is a continuation of the process that produced the report Technology Vision 2020: The U.S. Chemical Industry and the Council for Chemical Research`s (CCR) Chemical Synthesis Team follow-up work in chemical synthesis. Vision 2020 developed a 25-year vision for the chemical industry and outlined the challenges to be addressed in order to achieve this vision. This report, which outlines the catalysis technology roadmap, is based on the output of the CCR`s Chemical Synthesis Team, plus a workshop held March -20-21, 1997, which included about 50 participants, with catalysis experts from industry, academia, and government. It is clear that all participants view catalysis as a fundamental driver to the 0274 economic and environmental viability of the chemical industry. Advances in catalytic science and technology are among the most crucial challenges to achieving the goals of the chemical industry advanced in Vision 2020.