Publications

Results 74401–74600 of 96,771

Search results

Jump to search filters

In-situ formation of bismuth-based iodine waste forms

Materials Research Society Symposium Proceedings

Nenoff, Tina; Krumhansl, James L.; Rajan, Ashwath

We investigated the synthesis of bismuth oxy-iodide and iodate compounds, in an effort to develop materials for iodine recovery from caustic waste streams and/or final waste disposal if repository conditions included ambient conditions similar to those under which the iodine was initially captured. The results presented involve the in-situ crystallization of layered bismuth oxide compounds with aqueous dissolved iodine (which resides as both iodide and iodate in solution). Although single-phase bismuth oxy-iodide materials have already been described in the context of capturing radioiodine, our unique contribution is the discovery that there is a mixture of Bi-O-I compositions, not described in the prior work, which optimize both the uptake and the degree of insolubility (and leachability) of iodine. The optimized combination produces a durable material that is suitable as a waste form for repository conditions such as are predicted at the Yucca Mountain repository (YMP) or in a similar type of repository that could be developed in coordination with iodine production via Global Nuclear Energy Program (GNEP) production cycles. © 2008 Materials Research Society.

More Details

Implementing peridynamics within a molecular dynamics code

Computer Physics Communications

Parks, Michael L.; Lehoucq, Richard B.; Plimpton, Steven J.; Silling, Stewart A.

Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe material properties. In this context, nonlocal means that continuum points separated by a finite distance may exert force upon each other. A meshless method results when PD is discretized with material behavior approximated as a collection of interacting particles. This paper describes how PD can be implemented within a molecular dynamics (MD) framework, and provides details of an efficient implementation. This adds a computational mechanics capability to an MD code, enabling simulations at mesoscopic or even macroscopic length and time scales. © 2008 Elsevier B.V.

More Details

Remarks on mesh quality

46th AIAA Aerospace Sciences Meeting and Exhibit

Knupp, Patrick K.

Various aspects of mesh quality are surveyed to clarify the disconnect between the traditional uses of mesh quality metrics within industry and the fact that quality ultimately depends on the solution to the physical problem. Truncation error analysis for ffnite difference methods reveals no clear connection to most traditional mesh quality metrics. Finite element bounds to the interpolation error can be shown, in some cases, to be related to known quality metrics such as the condition number. On the other hand, the use of quality metrics that do not take solution characteristics into account can be valid in certain circumstances, primarily as a means of automatically detecting defective meshes. The use of such metrics when applied to simulations for which quality is highly-dependent on the physical solution is clearly inappropriate. Various ffaws and problems with existing quality metrics are mentioned, along with a discussion on the use of threshold values. In closing, the author advocates the investigation of explicitly-referenced quality metrics as a potential means of bridging the gap between a priori quality metrics and solution-dependent metrics.

More Details

Accurate measurement of cellular autofluorescence is critical for imaging of host-pathogen interactions

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Timlin, Jerilyn A.; Noek, Rachel M.; Kaiser, Julia N.; Sinclair, Michael B.; Jones, Howland D.; Davis, Ryan W.; Lane, Todd L.

Cellular autofluorescence, though ubiquitous when imaging cells and tissues, is often assumed to be small in comparison to the signal of interest. Uniform estimates of autofluorescence intensity obtained from separate control specimens are commonly employed to correct for autofluorescence. While these may be sufficient for high signal-to-background applications, improvements in detector and probe technologies and introduction of spectral imaging microscopes have increased the sensitivity of fluorescence imaging methods, exposing the possibility of effectively probing the low signal-to-background regime. With spectral imaging, reliable monitoring of signals near or even below the noise levels of the microscope is possible if autofluorescence and background signals can be accurately compensated for. We demonstrate the importance of accurate autofluorescence determination and utility of spectral imaging and multivariate analysis methods using a case study focusing on fluorescence confocal spectral imaging of host-pathogen interactions. In this application fluorescent proteins are produced when bacteria invade host cells. Unfortunately the analyte signal is spectrally overlapped and typically weaker than the cellular autofluorescence. In addition to discussing the advantages of spectral imaging for following pathogen invasion, we present the spectral properties of mouse macrophage autofluorescence. The imaging and analysis methods developed are widely applicable to cell and tissue imaging. © 2008 Copyright SPIE - The International Society for Optical Engineering.

More Details

Development of validated blade structural models

46th AIAA Aerospace Sciences Meeting and Exhibit

Griffith, Daniel G.; Paquette, Joshua P.; Carne, Thomas G.

The focus of this paper is on the development of validated models for wind turbine blades. Validation of these models is a comprehensive undertaking which requires carefully designing and executing experiments, proposing appropriate physics-based models, and applying correlation techniques to improve these models based on the test data. This paper will cover each of these three aspects of model validation, although the focus is on the third - model calibration. The result of the validation process is an understanding of the credibility of the model when used to make analytical predictions. These general ideas will be applied to a wind turbine blade designed, tested, and modeled at Sandia National Laboratories. The key points of the paper include discussions of the tests which are needed, the required level of detail in these tests to validate models of varying detail, and mathematical techniques for improving blade models. Results from investigations into calibrating simplified blade models are presented.

More Details

Aerodynamic and aeroacoustic properties of flatback airfoils

46th AIAA Aerospace Sciences Meeting and Exhibit

Berg, Dale E.; Zayas, Jose R.

In 2002, Sandia National Laboratories (SNL) initiated a research program to demonstrate the use of carbon fiber in wind turbine blades and to investigate advanced structural concepts through the Blade Systems Design Study, known as the BSDS. One of the blade designs resulting from this program, commonly referred to as the BSDS blade, resulted from a systems approach in which manufacturing, structural and aerodynamic performance considerations were all simultaneously included in the design optimization. The BSDS blade design utilizes "flatback" airfoils for the inboard section of the blade to achieve a lighter, stronger blade. Flatback airfoils are generated by opening up the trailing edge of an airfoil uniformly along the camber line, thus preserving the camber of the original airfoil. This process is in distinct contrast to the generation of truncated airfoils, where the trailing edge the airfoil is simply cut off, changing the camber and subsequently degrading the aerodynamic performance. Compared to a thick conventional, sharp trailing-edge airfoil, a flatback airfoil with the same thickness exhibits increased lift and reduced sensitivity to soiling. Although several commercial turbine manufacturers have expressed interest in utilizing flatback airfoils for their wind turbine blades, they are concerned with the potential extra noise that such a blade will generate from the blunt trailing edge of the flatback section. In order to quantify the noise generation characteristics of flatback airfoils, Sandia National Laboratories has conducted a wind tunnel test to measure the noise generation and aerodynamic performance characteristics of a regular DU97-300-W airfoil, a 10% trailing edge thickness flatback version of that airfoil, and the flatback fitted with a trailing edge treatment. The paper describes the test facility, the models, and the test methodology, and provides some preliminary results from the test.

More Details

Fabrication of (Ba,Sr)TiO3 high-value integrated capacitors by chemical solution deposition

IEEE International Symposium on Applications of Ferroelectrics

Sigman, Jennifer; Clem, Paul G.; Brennecka, Geoffrey L.; Tuttle, Bruce T.

This report focuses on our recent advances in the fabrication and processing of barium strontium titanate (BST) thin films by chemical solution depositiion for next generation fuctional integrated capacitors. Projected trends for capacitors include increasing capacitance density, decreasing operating voltages, decreasing dielectric thickness and decreased process cost. Key to all these trends is the strong correlation of film phase evolution and resulting microstructure, it becomes possible to tailor the microstructure for specific applications. This interplay will be discussed in relation to the resulting temperature dependent dielectric response of the BST films.

More Details

Distributed network fusion for water quality

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Koch, Mark W.; Mckenna, Sean A.

To protect drinking water systems, a contamination warning system can use in-line sensors to detect accidental and deliberate contamination. Currently, detection of an incident occurs when data from a single station detects an anomaly. This paper considers the possibility of combining data from multiple locations to reduce false alarms and help determine the contaminant's injection source and time. If we consider the location and time of individual detections as points resulting from a random space-time point process, we can use Kulldorff's scan test to find statistically significant clusters of detections. Using EPANET, we simulate a contaminant moving through a water network and detect significant clusters of events. We show these significant clusters can distinguish true events from random false alarms and the clusters help identify the time and source of the contaminant. Fusion results show reduced errors with only 25% more sensors needed over a nonfusion approach. © 2008 ASCE.

More Details

Moving multiple sinks through wireless sensor networks for lifetime maximization

2008 5th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems, MASS 2008

Basagni, S.; Carosi, A.; Petrioli, C.; Phillips, Cynthia A.

We propose scalable models and centralized heuristics for the concurrent and coordinated movement of multiple sinks in a wireless sensor network (WSN). The proposed centralized heuristic runs in polynomial time given the solution to the linear program and achieves results that are within 2% of the LP-relaxation-based upper bound. It provides a useful benchmark for evaluating centralized and distributed schemes for controlled sink mobility. © 2008 IEEE.

More Details

Fusion-fission hybrids for nuclear waste transmutation: A synergistic step between Gen-IV fission and fusion reactors

Fusion Engineering and Design

Mehlhorn, Thomas A.; Cipiti, Benjamin B.; Olson, C.L.; Rochau, Gary E.

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors. © 2008 Elsevier B.V. All rights reserved.

More Details

Influence of misfit mechanisms on jointed structure response

Conference Proceedings of the Society for Experimental Mechanics Series

Resor, Brian R.; Starr, Michael J.

Geometric features with characteristic lengths on the order of the size of the contact patch interface may be at least partly responsible for the variability observed in experimental measurements of structural stiffness and energy dissipation per cycle in a bolted joint. Experiments on combinations of two different types of joints (statically determinate single-joint and statically indeterminate three-joint structures) of nominally identical hardware show that the structural stiffness of the tested specimens varies by up to 25% and the energy dissipation varies by up to nearly 300%. A pressure-sensitive film was assembled into the interfaces of jointed structures to gain a qualitative understanding of the distribution of interfacial pressures of nominally conformal surfaces. The resultant pressure distributions suggest that there are misfit mechanisms that may influence contact patch geometry and also structural response of the interface. These mechanisms include local plateaus and machining induced waviness. The mechanisms are not consistent across nominally machined hardware interfaces. The proposed misfit mechanisms may be partly responsible for the variability in energy dissipation per cycle of joint experiments.

More Details

Air-drag damping on micro-cantilever beams

Conference Proceedings of the Society for Experimental Mechanics Series

Sumali, Hartono S.; Carne, Thomas G.

Damping in a micro-cantilever beam was measured for a very broad range of air pressures from atmosphere (10 5 Pa) down to 0.2 Pa. The beam was in open space free from squeeze films. The damping ratio, due mainly to air drag, varied by a factor of 10 4 within this pressure range. The damping due to air drag was separated from other sources of energy dissipation so that air damping could be measured at 10 -6 of critical damping factor. The linearity of the damping was confirmed over a wide range of beam vibration levels. Lastly, the measured damping was compared with several existing theories for air-drag damping for both rarified and viscous flow gas theories. The measured data indicate that, in the rarefied regime the air damping is proportional to pressure, independent of viscosity, and in the viscous regime the damping is determined by viscosity.

More Details

Radar transmitter and receiver MCM subassemblies implemented in LTCC

4th IMAPS/ACerS International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies 2008, CICMT 2008

Knudson, R.T.; Smith, F.; Zawicki, L.R.; Peterson, K.A.

The development of transmitter and receiver Multichip Module subassemblies implemented in LTCC for an S-band radar application followed an approach that reduces the number of discrete devices and increases reliability. The LTCC MCM incorporates custom GaAs RF integrated circuits in faraday cavities, novel methods of reducing line resistance and enhancing lumped element Q, and a thick film back plane which attaches to a heat sink. The incorporation of PIN diodes on the receiver and a 50W power amplifier on the transmitter required methods for removing heat beyond what thermal vias can accomplish. The die is a high voltage pHEMT GaAs power amplifier RFIC chip that measures 6.5 mm × 8 mm. Although thermal vias are adequate in certain cases, the thermal solution includes heat spreaders and thermally conductive backplates. Processing hierarchy, including gold-tin die attach and various use of polymeric attachment, must allow rework on these prototypical devices. LTCC cavity covers employ metallic coatings on their exterior surfaces. The processing of the LTCC and its effect on the function of the transmitter and receiver circuits is discussed in the poster session.

More Details

Low-memory Lagrangian relaxation methods for sensor placement in municipal water networks

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.

Placing sensors in municipal water networks to protect against a set of contamination events is a classic p-median problem for most objectives when we assume that sensors are perfect. Many researchers have proposed exact and approximate solution methods for this p-median formulation. For full-scale networks with large contamination event suites, one must generally rely on heuristic methods to generate solutions. These heuristics provide feasible solutions, but give no quality guarantee relative to the optimal placement. In this paper we apply a Lagrangian relaxation method in order to compute lower bounds on the expected impact of suites of contamination events. In all of our experiments with single objectives, these lower bounds establish that the GRASP local search method generates solutions that are provably optimal to to within a fraction of a percentage point. Our Lagrangian heuristic also provides good solutions itself and requires only a fraction of the memory of GRASP. We conclude by describing two variations of the Lagrangian heuristic: an aggregated version that trades off solution quality for further memory savings, and a multi-objective version which balances objectives with additional goals. © 2008 ASCE.

More Details

Analysis of proton and heavy-ion irradiation effects on phase change memories with MOSFET and BJT selectors

IEEE Transactions on Nuclear Science

Gasperin, Alberto; Paccagnella, Alessandro; Schwank, James R.; Vizkelethy, Gyorgy; Ottogalli, Federica; Pellizzer, Fabio

We study proton and heavy ion irradiation effects on Phase Change Memories (PCM) with MOSFET and BJT selectors and the effect of the irradiation on the retention characteristics of these devices. Proton irradiation produces noticeable variations in the cell distributions in PCM with MOSFET selectors mostly due to leakage currents affecting the transistors. PCM with BJT selectors show only small variations after proton irradiation. PCM cells do not appear to be impacted by heavy-ion irradiation. Using high temperature accelerated retention tests, we demonstrate that the retention capability of these memories is not compromised by the irradiation. © 2006 IEEE.

More Details

Large-scale open pool experimental data and analysis for fire model validation and development

Fire Safety Science

Blanchat, Thomas; Figueroa Faria, Victor G.

Four large-scale open pool fire experiments were performed with well-characterized boundary and initial conditions. Results presented include a general description of test observations, wind measurements, fire plume topology, fuel recession and heat release rates, incident heat flux to the pool, surrounding terrain, and calorimeters. All initial and boundary condition data required as necessary inputs to computation models are also presented. The large physical scale, the experimental design, the use of independent measurement techniques, and the attention to data quality provide a unique dataset to support numerical fire model validation. Copyright © 2008 International Association For Fire Safety Science.

More Details

Code case validation of Impulsively Loaded EDS subscale vessel

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Yip, Mien Y.; Haroldsen, Brent L.; Puskar, J.D.

The Explosive Destruction System (EDS) was developed by Sandia National Laboratories for the US Army Product Manager for Non-Stockpile Chemical Materiel (PMNSCM) to destroy recovered, explosively configured,chemical munitions. PMNSCM currently has five EDS units that have processed over 850 items. The system uses linear and conical shaped charges to open munitions and attack the burster followed by chemical treatment of the agent. The main component of the EDS is a stainless steel, cylindrical vessel, which contais the explosion and the subsequent chemical treatment. Extensive modeling and testing have been, and continue to be used, to design and qualify the vessel for different applications and conditions. This has included explosive overtests using small, geometrically scaled vessels to study overloads, plastic deformation, and failure limits. Recently the ASME Task Group on Impulsively Loaded Vessels has developed a Code Case under Section VIII Division 3 of the ASME Boiler and Pressure Vessel Code for the design of vessel like the EDS. In this article, a representative EDS subscale vessel is investigated against the ASME Design Codes for vessels subjected to impulsive loads. Topics include strain-based plastic collapse, fatigue and fracture analysis, and leak-before-burst. Vessel design validation is based on model results, where the high explosive (HE) pressure histories and subsequent vessel response (strain histories) are modeled using the analysis codes CTH and LSDYNA, respectively. Copyright © 2008 by ASME.

More Details

Operational results of russian-built photovoltaic alternative energy powered lighthouses in extreme climates

American Solar Energy Society - SOLAR 2008, Including Proc. of 37th ASES Annual Conf., 33rd National Passive Solar Conf., 3rd Renewable Energy Policy and Marketing Conf.: Catch the Clean Energy Wave

Estrada, Luis; Rosenthal, Andrew; Foster, Robert; Hauser, Gene C.; Grigoriev, Alexander; Khoudykin, Alexei

This paper summarizes operational histories of three Russian-designed photovoltaic (PV) lighthouses in Norway and Russia. All lighthouses were monitored to evaluate overall system and Nickel Cadmium (NiCad) battery bank performance to determine battery capacity, charging trends, temperature, and reliability. The practical use of PV in this unusual mode, months of battery charging followed by months of battery discharging, is documented and assessed. This paper presents operational data obtained from 2004 through 2007.

More Details

Liquid-phase diesel spray penetration during end-of-injection transient

Proceedings of the 7th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2008

Kook, Sanghoon; Pickett, Lyle M.; Musculus, Mark P.; Kattke, Kyle; Gehmlich, Ryan K.

Unlike conventional diesel engines, which have a negative ignition dwell, many strategies for low-emissions diesel combustion operate with a positive ignition dwell mode, where the ignition delay exceeds the injection duration. Although nitrogen oxides and particulate matter emissions can be reduced by operating with a positive ignition dwell, unburned hydrocarbon and carbon monoxide emissions typically increase. Sources of these emissions can stem from characteristics of the fuel spray after the end of injection, which may differ significantly from the main injection period where most spray models have been developed. To provide fundamental details of spray mixing during the end-of-injection transient, we have studied liquid-phase spray penetration and evaporation using simultaneous high-speed shadowgraph and Mie-scatter imaging for a single-hole, common-rail injector. Experiments were conducted over a wide range of ambient temperature and density in a constant-volume vessel. The experiments show that during the injection-rate ramp-down, the liquid penetration decreases (recedes towards the injector) from the quasi-steady-state distance for most diesel conditions. A transient jet entrainment model, coupled with the assumption of mixing-limited spray vaporization and direct measurement of the vaporized jet spreading angle, shows that this behavior is caused by a slower fuel delivery interacting with an increased rate of ambient entrainment during the injection-rate ramp-down. This increased mixing travels downstream as an "entrainment wave", permitting complete vaporization at distances closer to the injector than the quasi-steady liquid length. The position of the entrainment wave relative to the quasi-steady liquid length determines how far, and how quickly, the liquid recedes towards the injector. The tendency of recession increases with increasing ambient temperature and density because the transit time of the entrainment wave to the liquid length is shorter than the injection-rate ramp-down transient. Alternatively, the liquid-length recession is zero for conditions with low ambient temperature or density because the entrainment wave does not reach the quasi-steady liquid length until after the end of the injection-rate ramp-down. Copyright © 2008 by the Japan Society of Mechanical Engineers.

More Details

The cognitive foundry: A flexible platform for intelligent agent modeling

2008 BRIMS Conference - Behavior Representation in Modeling and Simulation

Basilico, Justin D.; Benz, Zachary O.; Dixon, Kevin R.

The Cognitive Foundry is a unified collection of tools for Cognitive Science and Technology applications, supporting the development of intelligent agent models. The Foundry has two primary components designed to facilitate agent construction: the Cognitive Framework and Machine Learning packages. The Cognitive Framework provides design patterns and default implementations of an architecture for evaluating theories of cognition, as well as a suite of tools to assist in the building and analysis of theories of cognition. The Machine Learning package provides tools for populating components of the Cognitive Framework from domain-relevant data using automated knowledge-capture techniques. This paper describes the Cognitive Foundry with a focus on its application within the context of agent behavior modeling.

More Details

Using multivariate analyses to compare subsets of electrodes and potentials within an electrode array for predicting sugar concentrations in mixed solutions

Journal of Electroanalytical Chemistry

Steen, William A.; Stork, Chris L.

A non-selective electrode array is presented for the quantification of fructose, galactose, and glucose in mixed solutions. A unique feature of this electrode array relative to other published work is the wide diversity of electrode materials incorporated within the array, being constructed of 41 different metals and metal alloys. Cyclic voltammograms were acquired for solutions containing a single sugar at varying concentrations, and the correlation between current and sugar concentration was calculated as a function of potential and electrode array element. The correlation plots identified potential regions and electrodes that scaled most linearly with sugar concentration, and the number of electrodes used in building predictive models was reduced to 15. Partial least squares regression models relating electrochemical response to sugar concentration were constructed using data from single electrodes and multiple electrodes within the array, and the predictive abilities of these models were rigorously compared using a non-parametric Wilcoxon test. Models using single electrodes (Pt:Rh (90:10) for fructose, Au:Ni (82:18) for galactose, and Au for glucose) were judged to be statistically superior or indistinguishable from those built with multiple electrodes. Additionally, for each sugar, interval partial least squares regression successfully identified a subset of potentials within a given electrode that generated a model of statistically equivalent predictive ability relative to the full potential model. While including data from multiple electrodes offered no benefit in predicting sugar concentration, use of the array afforded the versatility and flexibility of selecting the best single electrode for each sugar. © 2008 Elsevier B.V. All rights reserved.

More Details

Dynamic initiation fracture toughness of high strength steel alloys

Society for Experimental Mechanics - 11th International Congress and Exhibition on Experimental and Applied Mechanics 2008

Foster, John T.; Luk, Vincent K.; Chen, Weinong W.

Determination of fracture toughness for metals under quasi-static loading conditions can follow well-established procedures and ASTM standards. The use of metallic materials in impact-related applications requires the determination of dynamic fracture toughness for these materials. There are two main challenges in experiment design that must be overcome before valid dynamic data can be obtained. Dynamic equilibrium over the entire specimen needs to be approximately achieved to relate the crack tip loading state to the far-field loading conditions. The loading rate at the crack tip should be maintained nearly constant during an experiment to delineate rate effects on the values of dynamic fracture toughness. A recently developed experimental technique for determining dynamic fracture toughness of brittle materials has been adapted to measure the dynamic initiation fracture toughness of high strength steel alloys. A split-Hopkinson pressure bar is used to apply the dynamic loading. A pulse shaper is used to achieve constant loading rate at the crack tip and dynamic equilibrium across the specimen. A four-point bending configuration is used at the impact section of the setup. ©2008 Society for Experimental Mechanics Inc.

More Details

Sensitivity analyses of radionuclide transport in the saturated zone at yucca mountain, nevada

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Arnold, Bill W.; Hadgu, Teklu H.; Sallaberry, Cedric J.

Simulation of potential radionuclide transport in the saturated zone from beneath the proposed repository at Yucca Mountain to the accessible environment is an important aspect of the total system performance assessment (TSPA) for disposal of high-level radioactive waste at the site. Analyses of uncertainty and sensitivity are integral components of the TSPA and have been conducted at both the sub-system and system levels to identify parameters and processes that contribute to the overall uncertainty in predictions of repository performance. Results of the sensitivity analyses indicate that uncertainty in groundwater specific discharge along the flow path in the saturated zone from beneath the repository is an important contributor to uncertainty in TSPA results and is the dominant source of uncertainty in transport times in the saturated zone for most radionuclides. Uncertainties in parameters related to matrix diffusion in the volcanic units, colloid-facilitated transport, and sorption are also important contributors to uncertainty in transport times to differing degrees for various radionuclides.

More Details

Dual-permeability modeling and evaluation of drift-shadow experiments

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Ho, Clifford K.; Arnold, Bill W.; Altman, Susan J.

The drift-shadow effect describes capillary diversion of water flow around a drift or cavity in porous or fractured rock, resulting in lower water flux directly beneath the cavity. This paper presents computational simulations of drift-shadow experiments using dual-permeability models, similar to the models used for performance assessment analyses of flow and seepage in unsaturated fractured tuff at Yucca Mountain. Results show that the dual-penneability models capture the salient trends and behavior observed in the experiments, but constitutive relations (e.g., fracture capillary-pressure curves) can significantly affect the simulated results. An evaluation of different meshes showed that at the grid refinement used, a comparison between orthogonal and unstructured meshes did not result in large differences.

More Details

Yucca mountain 2008 performance assessment: Uncertainty and sensitivity analysis for expected dose

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Hansen, C.W.; Brooks, K.; Groves, J.W.; Helton, J.C.; Lee, K.P.; Sallaberry, Cedric J.; Statham, W.; Thorn, C.

Uncertainty and sensitivity analyses of the expected dose to the reasonably maximally exposed individual in the Yucca Mountain 2008 total system performance assessment (TSPA) are presented. Uncertainty results are obtained with Latin hypercube sampling of epistemic uncertain inputs, and partial rank correlation coefficients are used to illustrate sensitivity analysis results.

More Details

Yucca mountain 2008 performance assessment: Uncertainty and sensitivity analysis for physical processes

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Sallaberry, Cedric J.; Aragon, A.; Bier, A.; Chen, Y.; Groves, J.W.; Hansen, C.W.; Helton, J.C.; Mehta, S.; Miller, S.P.; Min, J.; Vo, P.

The Total System Performance Assessment (TSPA) for the proposed high level radioactive waste repository at Yucca Mountain, Nevada, uses a sampling-based approach to uncertainty and sensitivity analysis. Specifically, Latin hypercube sampling is used to generate a mapping between epistemically uncertain analysis inputs and analysis outcomes of interest. This results in distributions that characterize the uncertainty in analysis outcomes. Further, the resultant mapping can be explored with sensitivity analysis procedures based on (i) examination of scatterplots, (ii) partial rank correlation coefficients, (iii) R2 values and standardized rank regression coefficients obtained in stepwise rank regression analyses, and (iv) other analysis techniques. The TSPA considers over 300 epistemically uncertain inputs (e.g., corrosion properties, solubilities, retardations, defining parameters for Poisson processes, ⋯) and over 70 time-dependent analysis outcomes (e.g., physical properties in waste packages and the engineered barrier system, releases from the engineered barrier system, the unsaturated zone and the saturated zone for individual radionuclides, and annual dose to the reasonably maximally exposed individual (RMEI) from both individual radionuclides and all radionuclides. The obtained uncertainty and sensitivity analysis results play an important role in facilitating understanding of analysis results, supporting analysis verification, establishing risk importance, and enhancing overall analysis credibility. The uncertainty and sensitivity analysis procedures are illustrated and explained with selected results for releases from the engineered barrier system, the unsaturated zone and the saturated zone and also for annual dose to the RMEI.

More Details

Streamer initiation in volume and surface discharges in atmospheric gases

Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC

Lehr, J.M.; Warne, Larry K.; Jorgenson, Roy E.; Wallace, Z.R.; Hodge, K.C.; Caldwell, Michele C.

It is generally acknowledged that once a highly conductive channel is established between two charged and conducting materials, electrical breakdown is well established and difficult to interrupt. An understanding of the initiation mechanism for electrical breakdown is crucial for devising mitigating methods to avoid catastrophic failures. Both volumetric and surface discharges are of interest. An effort is underway where experiments and theory are being simultaneously developed. The experiment consists of an impedance matched discharge chamber capable of investigating various gases and pressures to ten atmospheres. In addition to current and voltage measurements, a high dynamic range streak camera records streamer velocities. The streamer velocities are particularly valuable for comparison with theory. A streamer model is being developed which includes photo-ionization and particle interactions with an insulating surface. The combined theoretical and experimental effort is aimed at detailed comparisons of streamer development as well as a quantitative understanding of how streamers interact with dielectric surfaces and the resulting effects on breakdown voltage. © 2008 IEEE.

More Details

Characterization of general and localized corrosion resistance of several titanium alloys in high temperature brines

17th International Corrosion Congress 2008: Corrosion Control in the Service of Society

Gordon, Gerald M.; Mon, Kevin G.; Kim, Young J.

For the Yucca Mountain Project nuclear waste repository design, the emplaced waste packages are covered by a self-supported inverted U-shaped drip shield fabricated from Ti Grade 7 with Ti Grade 29 structural support members. This paper reports experimental results obtained to characterize the corrosion behavior of several titanium alloys. General corrosion rates were obtained using weight loss and electrochemical techniques such as cyclic potentiodynamic polarization and electrochemical impedance spectroscopy. Localized corrosion resistance was assessed from the results of cyclic potentiodynamic polarization and long-term corrosion potential measurements. The results indicate the drip shield titanium alloys are highly resistant to general and localized corrosion under repository-relevant conditions. © 2009 by NACE International.

More Details

Water availability inside proposed Yucca mountain repository breached waste packages

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Wang, Yifeng; Jove Colon, Carlos F.; Lord, Michael E.; Mattie, Patrick D.; MacKinnon, R.J.

We present a model to evaluate the water mass balance inside a breached waste package in Yucca Mountain (YM) repository environments. The amount of water as liquid or vapor that can accumulate inside or percolate through the package in the emplacement drift is modeled as a function of the temperature and relative humidity (RH) near the waste package, the dripping rate of water from seepage, the area of failure patches on the waste package, and the extent of waste degradation. The water activity inside the waste package is assumed to be determined by both matric and osmotic potentials in the porous waste degradation products that also includes hygroscopic salts. We implemented the model and conducted a set of Monte Carlo simulations to gain insight into the variability and uncertainty associated with model predictions. The model shows that water vapor diffusion can be as important as the advective seepage flow. In addition, chemical reactions during waste degradation can consume a significant fraction of water accumulated in the waste package.

More Details

Re-engineering PCM/FM as a phase modulation scheme

Proceedings of the International Telemetering Conference

Punnoose, Ratish J.

Historically, (PCM/FM) receivers have used simple detection schemes yielding low performance. Using multi-symbol detection methods, PCM/FM can be received with better error performance than either SOQPSK or multi-h CPM. We present an approximation by which PCM/FM can be reinterpreted as a phase modulation scheme, allowing the use of coherent detection techniques. This is backward compatible with existing receivers. We also present an extension by which the error performance of the approximated PCM/FM can be improved even further with no change to the spectral properties. This improved waveform can be used in systems where compatibility with existing frequency allocation schemes is required. © International Foundation for Telemetering, 2008.

More Details

Self-voting dual-modular-redundancy circuits for single-event-transient mitigation

IEEE Transactions on Nuclear Science

Teifel, John T.

Dual-modular-redundancy (DMR) architectures use duplication and self-voting asynchronous circuits to mitigate single event transients (SETs). The area and performance of DMR circuitry is evaluated against conventional triple-modular-redundancy (TMR) logic. Benchmark ASIC circuits designed with DMR logic show a 1024% area improvement for flip-flop designs, and a 33% improvement for latch designs. © 2006 IEEE.

More Details

Load line evaluation of a 1-MV linear transformer driver (LTD)

Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC

Leckbee, Joshua L.; Cordova, S.; Oliver, Bryan V.; Johnson, David L.; Toury, Martial; Rosol, Rodolphe; Bui, Bill

A seven cavity LTD system has been assembled and tested in a voltage adder configuration capable of producing approximately 1-MV into a 7-Ω, critically damped load. Individual cavities have been tested with a resistive load. The seven cavity adder has been tested with a large area electron beam diode. The output pulse when tested into a resistive load is that of an RLC circuit. When tested with a dynamic load impedance, the output voltages of the cavities have an added oscillation. The oscillation affects the output pulse shape but is not harmful to the cavity components. © 2008 IEEE.

More Details

Product life-cycle modeling utilizing sysML modeling

18th Annual International Symposium of the International Council on Systems Engineering, INCOSE 2008

Brodbeck, Georgia L.; De Spain, Mark J.; Griego, Regina M.

Functional modeling and SysML/UML are defined communication languages that engineers and related disciplines use to communicate the nature of engineering products. We often see functional modeling and SysML/UML used to describe large, physical entities, such as airplanes or space craft. Systems engineers use functional modeling to decompose these large systems into subsystems. Each subsystem has defined requirements, defined roles and responsibilities (functions), and definable interfaces. Each subsystem consists of electrical hardware, mechanical hardware, and computer software. Functional modeling and SysML/UML can also be used for modeling program/project management processes, systems engineering processes, and manufacturing processes. Many organizations use an array of flow charts, organization charts, network diagrams, and spreadsheets to define engineering processes. This paper presents how Sandia National Laboratories (SNL) used functional modeling and SysML/UML to define the design and development processes and procedures for a product realization process (PRP) called the Integrated Phase Gate (IPG) Process. The use of functional modeling helped the organization more readily accept the use of systematic modeling for developing PRP. Additionally, this paper will explore the value of using SysML/UML over functional modeling in order to completely specify process and process artifacts. © 2008 by Georgia Artery, Mark De Spain and Regina Griego.

More Details

Identification of viruses using microfluidic protein profiling and bayesian classification

Analytical Chemistry

Fruetel, Julia A.; West, Jason A.A.; Debusschere, Bert D.; Hukari, Kyle; Lane, Todd L.; Najm, H.N.; Ortega, Jose; Renzi, Ronald F.; Shokair, Isaac R.; VanderNoot, Victoria A.

We present a rapid method for the identification of viruses using microfluidic chip gel electrophoresis (CGE) of high-copy number proteins to generate unique protein profiles. Viral proteins are solubilized by heating at 95°C in borate buffer containing detergent (5 min), then labeled with fluorescamine dye (10 s), and analyzed using the μChemLab CGE system (5 min). Analyses of closely related T2 and T4 bacteriophage demonstrate sufficient assay sensitivity and peak resolution to distinguish the two phage. CGE analyses of four additional viruses - MS2 bacteriophage, Epstein - Barr, respiratory syncytial, and vaccinia viruses - demonstrate reproducible and visually distinct protein profiles. To evaluate the suitability of the method for unique identification of viruses, we employed a Bayesian classification approach. Using a subset of 126 replicate electropherograms of the six viruses and phage for training purposes, successful classification with non-training data was 66/69 or 95% with no false positives. The classification method is based on a single attribute (elution time), although other attributes such as peak width, peak amplitude, or peak shape could be incorporated and may improve performance further. The encouraging results suggest a rapid and simple way to identify viruses without requiring specialty reagents such as PCR probes and antibodies. © 2008 American Chemical Society.

More Details

Non-proliferation impact assessment for GNEP: Transportation issues

American Nuclear Society - International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2008

Radel, Ross R.; Rochau, Gary E.

This report evaluates transportation risk for nuclear material in the proposed Global Nuclear Energy Partnership (GNEP) fuel cycle. Since many details of the GNEP program are yet to be determined, this document is intended only to identify general issues. The existing regulatory environment is determined to be largely prepared to incorporate the changes that the GNEP program will introduce. Nuclear material vulnerability and attractiveness are considered with respect to the various transport stages within the GNEP fuel cycle. It is determined that increased transportation security will be required for the GNEP fuel cycle, particularly for international transport. Finally, transportation considerations for several fuel cycle scenarios are discussed. These scenarios compare the current "once-through" fuel cycle with various aspects of the proposed GNEP fuel cycle.

More Details

Five-lens corrector for Cassegrain-form telescopes

Proceedings of SPIE - The International Society for Optical Engineering

Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

Refractive elements are commonly used on Cassegrain-form telescopes to correct off-axis aberrations and both widen and flatten the field. Early correctors used two lenses with spherical surfaces, but their performance was somewhat limited. More recent correctors have three or four lenses with some including at least one aspheric surface. These systems produce high resolution images over relatively wide fields but often require the corrector and mirrors to be optimized together. Here we present a new corrector design using five spherical lenses. This approach produces high image quality with low distortion over wide fields and has sufficient degrees of freedom to allow corrector to be optimized independent of the mirrors if necessary. © 2008 Copyright SPIE - The International Society for Optical Engineering.

More Details

Integration of the advanced transparency framework to advanced nuclear systems enhancing safety, operations, security, and safeguards (SOSS)

American Nuclear Society - International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2008

Cleary, Virginia D.; Rochau, Gary E.; Méndez, Carmen

The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework.

More Details

A phenomena identification and ranking table (PIRT) exercise for nuclear power plant fire model applications

American Nuclear Society - International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2008

Nowlen, Steven P.; Olivier, Tara J.; Dreisbach, Jason; Salley, Mark H.

This paper summarizes the results of a Phenomena Identification and Ranking Table (PIRT) exercise performed for nuclear power plant (NPP) fire modeling applications conducted on behalf of the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES). A PIRT exercise is a formalized, facilitated expert elicitation process. In this case, the expert panel was comprised of seven international fire science experts and was facilitated by Sandia National Laboratories (SNL). The objective of a PIRT exercise is to identify key phenomena associated with the intended application and to then rank the importance and current state of knowledge of each identified phenomenon. One intent of this process is to provide input into the process of identifying and prioritizing future research efforts. In practice, the panel considered a series of specific fire scenarios based on scenarios typically considered in NPP applications. Each scenario includes a defined figure of merit; that is, a specific goal to be achieved in analyzing the scenario through the application of fire modeling tools. The panel identifies any and all phenomena relevant to a fire modeling-based analysis for the figure of merit. Each phenomenon is ranked relative to its importance to the fire model outcome and then further ranked against the existing state of knowledge and adequacy of existing modeling tools to predict that phenomenon. The PIRT panel covered several fire scenarios and identified a number of areas potentially in need of further fire modeling improvements. The paper summarizes the results of the ranking exercise.

More Details

Fatigue behavior of thin Cu foils and Cu/Kapton flexible circuits

Materials Science and Technology Conference and Exhibition, MS and T'08

Beck, David F.; Susan, D.F.; Sorensen, Neil R.; Thayer, Gayle E.

A series of thin electrodeposited Cu foils and Cu foil/Kapton flex circuits were tested in bending fatigue according to ASTM E796 and IPC-TM-650. The fatigue behavior was analyzed in terms of strain vs. number of cycles to failure, using a Coffin-Manson approach. The effects of Cu foil thickness and Cu trace width are discussed. The Cu foils performed as expected and the Cu foil/Kapton® (E.I. du Pont de Nemours and Company, Wilmington, DE) composites showed significant improvement in fatigue lifetime due to the composite strengthening effect of the Kapton layers. However, the flex circuits showed more scatter in fatigue life based on electrical continuity. The effect of the Kapton layers manifests itself by significantly more widespread microcracking in the Cu traces and the extent of microcracking depended on the strain level. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. © 2008 MS&T'08 ®.

More Details

Chromatic aberrations in the field evaporation behavior of small precipitates

Microscopy and Microanalysis

Marquis, Emmanuelle A.; Vurpillot, Francois

Artifacts in the field evaporation behavior of small precipitates have limited the accuracy of atom probe tomography analysis of clusters and precipitates smaller than 2 nm. Here, we report on specific observations of reconstruction artifacts that were obtained in case of precipitates with radii less than 10 nm in Al alloys, focusing particularly on a shift that appears in the relative positioning of matrix and precipitate atoms. We show that this chemically dependent behavior, referred to as "chromatic aberration," is due to the electrostatic field above the emitter and the variations in field evaporation of the elements constituting the precipitates. © Microscopy Society of America 2008.

More Details

Preparing for the aftermath: Using emotional agents in game-based training for disaster response

2008 IEEE Symposium on Computational Intelligence and Games, CIG 2008

Djordjevich Reyna, Donna D.; Xavier, Patrick G.; Bernard, Michael L.; Whetzel, Jonathan H.; Glickman, Matthew R.; Verzi, Stephen J.

Ground Truth, a training game developed by Sandia National Laboratories in partnership with the University of Southern California GamePipe Lab, puts a player in the role of an Incident Commander working with teammate agents to respond to urban threats. These agents simulate certain emotions that a responder may feel during this high-stress situation. We construct psychology-plausible models compliant with the Sandia Human Embodiment and Representation Cognitive Architecture (SHERCA) that are run on the Sandia Cognitive Runtime Engine with Active Memory (SCREAM) software. SCREAM's computational representations for modeling human decision-making combine aspects of ANNs and fuzzy logic networks. This paper gives an overview of Ground Truth and discusses the adaptation of the SHERCA and SCREAM into the game. We include a semiformal descriptionof SCREAM. ©2008 IEEE.

More Details

The TEVA-SPOT toolkit for drinking water contaminant warning system design

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Murray, Regan; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.

More Details

Latent Morpho-Semantic Analysis: Multilingual information retrieval with character n-grams and mutual information

Coling 2008 - 22nd International Conference on Computational Linguistics, Proceedings of the Conference

Chew, Peter A.; Bader, Brett W.; Abdelali, Ahmed

We describe an entirely statistics-based, unsupervised, and language-independent approach to multilingual information retrieval, which we call Latent Morpho-Semantic Analysis (LMSA). LMSA overcomes some of the shortcomings of related previous approaches such as Latent Semantic Analysis (LSA). LMSA has an important theoretical advantage over LSA: it combines well-known techniques in a novel way to break the terms of LSA down into units which correspond more closely to morphemes. Thus, it has a particular appeal for use with morphologically complex languages such as Arabic. We show through empirical results that the theoretical advantages of LMSA can translate into significant gains in precision in multilingual information retrieval tests. These gains are not matched either when a standard stemmer is used with LSA, or when terms are indiscriminately broken down into n-grams. © 2008 Licensed under the Creative Commons.

More Details

Pressure-induced phase transition in a La-doped lead zirconate titanate

Ferroelectrics

Morosin, Bruno; Venturini, Eugene; Samara, George

Ceramic samples of Pb0.99La0.01 (Zr 0.91Ti0.09)O3 were studied by dielectric and time-of-flight neutron diffraction measurements at 300 and 250 K versus pressure. Isothermal dielectric data (300/250 K) suggest structural transitions with onsets near 0.35/0.37 GPa, respectively, for increasing pressure. On pressure release, only the 300K transition occurs (0.10 GPa; none indicated at 250 K). Diffraction data at 300 K show the sample has the R3c structure, remaining in that phase cooling to 250 K. Pressure increase (either 300 or 250 K) above 0.3 GPa yields a Pnma-like (AO) phase (two other prominent peaks in the spectra suggest a possible incommensurate cell). Temperature/pressure excursions show considerable phase hysteresis.

More Details

Yucca mountain 2008 performance assessment: Modeling disruptive events and early failures

American Nuclear Society - 12th International High-Level Radioactive Waste Management Conference 2008

Sevougian, S.D.; Behie, Alda; Chipman, Veraun; Gross, Michael B.; Mehta, Sunil; Statham, William

The representation of disruptive events (seismic and igneous events) and early failures of waste packages and drip shields in the 2008 total system performance assessment (TSPA) for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada is described, in the context of the 2008 TSPA, disruptive events and early failures are treated as phenomena that occur randomly (e.g., the time of a seismic event) and also have properties that are random (e.g., the peak ground velocity associated with a seismic event). Specifically the following potential disruptions are considered: (i) early failure of individual drip shields, (ii) early failure of individual waste packages, (iii) igneous intrusion events that result in the filling of the waste disposal drifts with magma, (iv) volcanic eruption events that result in the dispersal of waste into the atmosphere, (v) seismic events that damage waste packages and drip shields as a result of strong vibratory ground motion, and (vi) seismic events that damage waste packages and drip shields as a result of shear displacement along a fault. Example annual dose results are shown for the two most risk-significant events: strong seismic ground motion and igneous intrusion.

More Details

Risk-informed separation distances for use in NFPA hydrogen codes and standards

17th World Hydrogen Energy Conference 2008, WHEC 2008

LaChance, Jeffrey; Houf, William G.

The development of separation distances for hydrogen facilities can be determined in several ways. A conservative approach is to use the worst possible accidents in terms of consequences. Such accidents may be of very low frequency and would likely never occur. Although this approach bounds separation distances, the resulting distances are generally prohibitive. The current separation distances in hydrogen codes and standards do not reflect this approach. An alternative deterministic approach that is often utilized by standards development organizations and allowed under some regulations is to select accident scenarios that are more probable but do not provide bounding consequences. In this approach, expert opinion is generally used to select the accidents used as the basis for the prescribed separation distances.

More Details

Full tape thickness features for new capabilities in LTCC

Proceedings - 2008 International Symposium on Microelectronics, IMAPS 2008

Knudson, R.T.; Barner, Greg; Smith, Frank; Zawicki, Larry; Peterson, Ken

Full tape thickness features (FTTF) using conductors, high K and low K dielectrics, sacrificial volume materials, and magnetic materials are useful as both technically and cost-effective approaches to multiple needs in laminate microelectronic and microsystem structures. Lowering resistance in conductor traces of all kinds, raising Q-factors in coils, and enhancing EMI shielding in RF desingns are a few of the modern needs. By filling with suitable dielectric compositions one can deliver embedded capacitors with an appropriate balance between mechanical compatibility and safety factor for fabrication. Similar techniques could be applied to magnetic materials without wasteful manufacturing processes when the magnetic material is a small fraction of the overall circuit area. Finally, to open the technology of unfilled volumes for radio frequency performance as well as microfluidics and mixed cofired material applications, the full tape thickness implementation of sacrificial volume materials is also considered. We discuss implementations of FTTF structures and discuss technical problems and the promise such structures hold for the future.

More Details

A framework for the solution of inverse radiation transport problems

IEEE Nuclear Science Symposium Conference Record

Mattingly, John K.; Mitchell, Dean J.

Radiation sensing applications for SNM detection, identification, and characterization all face the same fundamental problem: each to varying degrees must infer the presence, identity, and configuration of a radiation source given a set of radiation signatures. This is a problem of inverse radiation transport: given the outcome of a measurement, what was thesource and transport medium that caused that observation? This paper presents a framework for solving inverse radiation transport problems, describes its essential components, and illustrates its features and performance. © 2008 IEEE.

More Details

Application specific compression : final report

Melgaard, David K.; Lewis, Phillip J.; Lee, David S.; Carlson, Jeffrey J.; Byrne, Raymond H.; Harrison, Carol D.

With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

More Details

Neutral atom traps

Pack, Michael P.

This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

More Details

Tolerating the community detection resolution limit with edge weighting

Proposed for publication in the Proceedings of the National Academy of Sciences.

Hendrickson, Bruce A.; Laviolette, Randall A.; Phillips, Cynthia A.; Berry, Jonathan W.

Communities of vertices within a giant network such as the World-Wide-Web are likely to be vastly smaller than the network itself. However, Fortunato and Barthelemy have proved that modularity maximization algorithms for community detection may fail to resolve communities with fewer than {radical} L/2 edges, where L is the number of edges in the entire network. This resolution limit leads modularity maximization algorithms to have notoriously poor accuracy on many real networks. Fortunato and Barthelemy's argument can be extended to networks with weighted edges as well, and we derive this corollary argument. We conclude that weighted modularity algorithms may fail to resolve communities with fewer than {radical} W{epsilon}/2 total edge weight, where W is the total edge weight in the network and {epsilon} is the maximum weight of an inter-community edge. If {epsilon} is small, then small communities can be resolved. Given a weighted or unweighted network, we describe how to derive new edge weights in order to achieve a low {epsilon}, we modify the 'CNM' community detection algorithm to maximize weighted modularity, and show that the resulting algorithm has greatly improved accuracy. In experiments with an emerging community standard benchmark, we find that our simple CNM variant is competitive with the most accurate community detection methods yet proposed.

More Details

Homeland security R&D roadmapping : risk-based methodological options

Brandt, Larry D.

The Department of Energy (DOE) National Laboratories support the Department of Homeland Security (DHS) in the development and execution of a research and development (R&D) strategy to improve the nation's preparedness against terrorist threats. Current approaches to planning and prioritization of DHS research decisions are informed by risk assessment tools and processes intended to allocate resources to programs that are likely to have the highest payoff. Early applications of such processes have faced challenges in several areas, including characterization of the intelligent adversary and linkage to strategic risk management decisions. The risk-based analysis initiatives at Sandia Laboratories could augment the methodologies currently being applied by the DHS and could support more credible R&D roadmapping for national homeland security programs. Implementation and execution issues facing homeland security R&D initiatives within the national laboratories emerged as a particular concern in this research.

More Details

Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report

Polsky, Yarom P.; Knudsen, Steven D.; Raymond, David W.

This report provides an assessment of well construction technology for EGS with two primary objectives: 1. Determining the ability of existing technologies to develop EGS wells. 2. Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics.

More Details

Parallel tetrahedral mesh refinement with MOAB

Thompson, David C.; Pebay, Philippe P.

In this report, we present the novel functionality of parallel tetrahedral mesh refinement which we have implemented in MOAB. This report details work done to implement parallel, edge-based, tetrahedral refinement into MOAB. The theoretical basis for this work is contained in [PT04, PT05, TP06] while information on design, performance, and operation specific to MOAB are contained herein. As MOAB is intended mainly for use in pre-processing and simulation (as opposed to the post-processing bent of previous papers), the primary use case is different: rather than refining elements with non-linear basis functions, the goal is to increase the number of degrees of freedom in some region in order to more accurately represent the solution to some system of equations that cannot be solved analytically. Also, MOAB has a unique mesh representation which impacts the algorithm. This introduction contains a brief review of streaming edge-based tetrahedral refinement. The remainder of the report is broken into three sections: design and implementation, performance, and conclusions. Appendix A contains instructions for end users (simulation authors) on how to employ the refiner.

More Details

Advanced engineering environment collaboration project

Dankiewicz, Robert J.; Dutra, Edward G.; Kiba, Grant W.; Lamph, Jane A.; Marburger, Scot J.

The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

More Details

Use of ceragenins to create novel biofouling resistant water-treatment membranes

Altman, Susan J.; Hibbs, Michael R.; Jones, Howland D.; Fellows, Benjamin D.

Scoping studies have demonstrated that ceragenins, when linked to water-treatment membranes have the potential to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced molecules that mimic antimicrobial peptides. Evidence includes measurements of CSA-13 prohibiting the growth of and killing planktonic Pseudomonas fluorescens. In addition, imaging of biofilms that were in contact of a ceragenin showed more dead cells relative to live cells than in a biofilm that had not been treated with a ceragenin. This work has demonstrated that ceragenins can be attached to polyamide reverse osmosis (RO) membranes, though work needs to improve the uniformity of the attachment. Finally, methods have been developed to use hyperspectral imaging with multivariate curve resolution to view ceragenins attached to the RO membrane. Future work will be conducted to better attach the ceragenin to the RO membranes and more completely test the biocidal effectiveness of the ceragenins on the membranes.

More Details

Molecular dynamics simulations of water confined between matched pairs of hydrophobic and hydrophilic self-assembled monolayers

Proposed for publication in Langmuir.

Stevens, Mark J.; Lane, James M.; Grest, Gary S.; Chandross, M.

We have conducted a molecular dynamics (MD) simulation study of water confined between methyl-terminated and carboxyl-terminated alkylsilane self-assembled monolayers (SAMs) on amorphous silica substrates. In doing so, we have investigated the dynamic and structural behavior of the water molecules when compressed to loads ranging from 20 to 950 MPa for two different amounts of water (27 and 58 water molecules/nm{sup 2}). Within the studied range of loads, we observe that no water molecules penetrate the hydrophobic region of the carboxyl-terminated SAMs. However, we observe that at loads larger than 150 MPa water molecules penetrate the methyl-terminated SAMs and form hydrogen-bonded chains that connect to the bulk water. The diffusion coefficient of the water molecules decreases as the water film becomes thinner and pressure increases. When compared to bulk diffusion coefficients of water molecules at the various loads, we found that the diffusion coefficients for the systems with 27 water molecules/nm{sup 2} are reduced by a factor of 20 at low loads and by a factor of 40 at high loads, while the diffusion coefficients for the systems with 58 water molecules/nm{sup 2} are reduced by a factor of 25 at all loads.

More Details

Improved parallel data partitioning by nested dissection with applications to information retrieval

Proposed for publication in Parallel Computing.

Boman, Erik G.; Chevalier, Cedric C.

The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it is a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.

More Details

A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system

Antolak, Arlyn J.; Doyle, Barney L.; King, Michael K.; Provencio, P.N.; Raber, Thomas N.

Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

More Details

A surety engineering framework to reduce cognitive systems risks

Peercy, David E.

Cognitive science research investigates the advancement of human cognition and neuroscience capabilities. Addressing risks associated with these advancements can counter potential program failures, legal and ethical issues, constraints to scientific research, and product vulnerabilities. Survey results, focus group discussions, cognitive science experts, and surety researchers concur technical risks exist that could impact cognitive science research in areas such as medicine, privacy, human enhancement, law and policy, military applications, and national security (SAND2006-6895). This SAND report documents a surety engineering framework and a process for identifying cognitive system technical, ethical, legal and societal risks and applying appropriate surety methods to reduce such risks. The framework consists of several models: Specification, Design, Evaluation, Risk, and Maturity. Two detailed case studies are included to illustrate the use of the process and framework. Several Appendices provide detailed information on existing cognitive system architectures; ethical, legal, and societal risk research; surety methods and technologies; and educing information research with a case study vignette. The process and framework provide a model for how cognitive systems research and full-scale product development can apply surety engineering to reduce perceived and actual risks.

More Details

Simulations and experiments of intense ion beam compression in space and time

Proposed for publication in Physics of Plasmas.

Sefkow, Adam B.

The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)]. To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an {approx}300 keV K{sup +} beam and have separately achieved transverse and longitudinal focusing to a radius <2 mm and pulse duration <5 ns, respectively. Simulation predictions and recent experiments demonstrate that a strong solenoid (B{sub Z} < 100 kG) placed near the end of the drift region can transversely focus the beam to the longitudinal focal plane. This paper reports on simulation predictions and experimental progress toward realizing simultaneous transverse and longitudinal charge bunch focusing. The proposed NDCX-II facility would capitalize on the insights gained from NDCX simulations and measurements in order to provide a higher-energy (>2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

More Details

Science, Technology, Engineering, and Mathematics (STEM) career attractiveness system dynamics modeling

Kelic, Andjelka; Zagonel, Aldo A.

A system dynamics model was developed in response to the apparent decline in STEM candidates in the United States and a pending shortage. The model explores the attractiveness of STEM and STEM careers focusing on employers and the workforce. Policies such as boosting STEM literacy, lifting the H-1B visa cap, limiting the offshoring of jobs, and maintaining training are explored as possible solutions. The system is complex, with many feedbacks and long time delays, so solutions that focus on a single point of the system are not effective and cannot solve the problem. A deeper understanding of parts of the system that have not been explored to date is necessary to find a workable solution.

More Details

Software and codes for analysis of concentrating solar power technologies

Ho, Clifford K.

This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

More Details

HOPSPACK: Hybrid Optimization Parallel Search Package

Kolda, Tamara G.

In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel Search Package), a new software platform which facilitates combining multiple optimization routines into a single, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The framework is designed such that existing optimization source code can be easily incorporated with minimal code modification. By maintaining the integrity of each individual solver, the strengths and code sophistication of the original optimization package are retained and exploited.

More Details

Plastic neutron detectors

Doty, Fred P.; King, Michael K.

This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in photoresponse with increasing stretch ratio. Other additives examined, including small molecules and cosolvents, did not cause any significant increase in photoresponse. Finally, we discovered an inverse-geometric particle track effect wherein increased track lengths created by tilting the detector off normal incidence resulted in decreased signal collection. This is interpreted as a trap-filling effect, leading to increased carrier mobility along the particle track direction. Estimated collection efficiency along the track direction was near 20 electrons/micron of track length, sufficient for particle counting in 50 micron thick films.

More Details

Finite element analysis of the Arquin-designed CMU wall under a dynamic (blast) load

Lopez Mestre, Carlos L.; Petti, Jason P.

The Arquin Corporation designed a CMU (concrete masonry unit) wall construction and reinforcement technique that includes steel wire and polymer spacers that is intended to facilitate a faster and stronger wall construction. Since the construction method for an Arquin-designed wall is different from current wall construction practices, finite element computer analyses were performed to estimate the ability of the wall to withstand a hypothetical dynamic load, similar to that of a blast from a nearby explosion. The response of the Arquin wall was compared to the response of an idealized standard masonry wall exposed to the same dynamic load. Results from the simulations show that the Arquin wall deformed less than the idealized standard wall under such loading conditions. As part of a different effort, Sandia National Laboratories also looked at the relative static response of the Arquin wall, results that are summarized in a separate SAND Report.

More Details

Development of an Automated Security Risk Assessment Methodology Tool for Critical Infrastructures

Roehrig, Nathaniel S.; Torres, Teresa M.

This document presents the security automated Risk Assessment Methodology (RAM) prototype tool developed by Sandia National Laboratories (SNL). This work leverages SNL's capabilities and skills in security risk analysis and the development of vulnerability assessment/risk assessment methodologies to develop an automated prototype security RAM tool for critical infrastructures (RAM-CI™). The prototype automated RAM tool provides a user-friendly, systematic, and comprehensive risk-based tool to assist CI sector and security professionals in assessing and managing security risk from malevolent threats. The current tool is structured on the basic RAM framework developed by SNL. It is envisioned that this prototype tool will be adapted to meet the requirements of different CI sectors and thereby provide additional capabilities.

More Details

The Xygra gun simulation tool

Garasi, Christopher J.; Robinson, Allen C.; Russo, Thomas V.; Lamppa, Derek C.

Inductive electromagnetic launchers, or coilguns, use discrete solenoidal coils to accelerate a coaxial conductive armature. To date, Sandia has been using an internally developed code, SLINGSHOT, as a point-mass lumped circuit element simulation tool for modeling coilgun behavior for design and verification purposes. This code has shortcomings in terms of accurately modeling gun performance under stressful electromagnetic propulsion environments. To correct for these limitations, it was decided to attempt to closely couple two Sandia simulation codes, Xyce and ALEGRA, to develop a more rigorous simulation capability for demanding launch applications. This report summarizes the modifications made to each respective code and the path forward to completing interfacing between them.

More Details

Static load test of Arquin-designed CMU wall

Jensen, Richard P.; Cherry, Jeffery L.

The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block used in constructing the wall are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBAP), Sandia National Laboratories conducted a series of tests that statically loaded wall segments to compare the Arquin method to a more traditional method of constructing CMU walls. A total of 12 tests were conducted, three with the Arquin method using a W5 reinforcing wire, three with the traditional method of construction using a number 3 rebar as reinforcing, three with the Arquin method using a W2 reinforcing wire, and three with the traditional construction method but without rebar. The results of the tests showed that the walls constructed with the Arquin method and with a W5 reinforcing wire withstood more load than any of the other three types of walls that were tested.

More Details

Scalable descriptive and correlative statistics with Titan

Pebay, Philippe P.; Thompson, David C.

This report summarizes the existing statistical engines in VTK/Titan and presents the parallel versions thereof which have already been implemented. The ease of use of these parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; then, this theoretical property is verified with test runs that demonstrate optimal parallel speed-up with up to 200 processors.

More Details

Influence of surface morphology on the wettability of microstructured ZnO-based surfaces

Journal of Physical Chemistry C

Piech, Martin; Sounart, Thomas L.; Liu, Jun

The effect of sample microstructure on water dynamic wetting behavior was examined for superhydrophobic ZnO films. Surface morphology ranging from needle arrays to overlapping platelets was controlled through judicious choice of hydrothermal reaction conditions. Structure modification with alkyl and perfluoroalkyl chains yielded films characterized by advancing contact angles that ranged from 159° to 171°. Contact angle hysteresis was less than 2° with needles (tip diameter <30 nm) and less than 11° for rods (diameter <250 nm). Relatively thick (diameter ∼600 nm) structures were still characterized by advancing contact angles exceeding 165° and hysteresis <30°. Formation of nanometer-scale roughness on top of the microstructure via silica deposition significantly enhanced the surface superhydrophobicity. Similarly, following perfluoro-alkane treatment, all examined microstructures exhibited advancing contact angles > 169° and hysteresis < 7°. © 2008 American Chemical Society.

More Details
Results 74401–74600 of 96,771
Results 74401–74600 of 96,771