Publications

17 Results

Search results

Jump to search filters

FARM : an automated malware analysis environment

Vanrandwyk, Jamie V.; Lloyd, Levi L.; Chiang, Ken C.; Vanderveen, Keith V.

We present the forensic analysis repository for malware (FARM), a system for automating malware analysis. FARM leverages existing dynamic and static analysis tools and is designed in a modular fashion to provide future extensibility. We present our motivations for designing the system and give an overview of the system architecture. We also present several common scenarios that detail uses for FARM as well as illustrate how automated malware analysis saves time. Finally, we discuss future development of this tool.

More Details

InfoStar: An adaptive visual analytics platform for mobile devices

Proceedings of the ACM/IEEE 2005 Supercomputing Conference, SC'05

Sanfilippo, Antonio; May, Richard; Danielson, Gary; Baddeley, Bob; Riensche, Rick; Kirby, Skip; Collins, Sharon; Thornton, Susan; Washington, Kenneth; Schrager, Matt; Vanrandwyk, Jamie V.; Borchers, Bob; Gatchell, Doug

We present the design and implementation of InfoStar, an adaptive visual analytics platform for mobile devices such as PDAs, laptops, Tablet PCs and mobile phones, InfoStar extends the reach of visual analytics technology beyond the traditional desktop paradigm to provide ubiquitous access to interactive visualizations of information spaces. These visualizations are critical in addressing the knowledge needs of human agents operating in the field, in areas as diverse as business, homeland security, law enforcement, protective services, emergency medical services and scientific discovery. We describe an initial real world deployment of this technology, in which the InfoStar platform has been used to offer mobile access to scheduling and venue information to conference attendees at Supercomputing 2004. © 2005 IEEE.

More Details

Intrusion detection and monitoring for wireless networks

Vanrandwyk, Jamie V.; Thomas, Eric D.; Custer, Ryan C.; Lee, Erik L.; Kilman, Dominique K.; Franklin, Jason F.

Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

More Details

NetState : a network version tracking system

Durgin, Nancy A.; Vanrandwyk, Jamie V.

Network administrators and security analysts often do not know what network services are being run in every corner of their networks. If they do have a vague grasp of the services running on their networks, they often do not know what specific versions of those services are running. Actively scanning for services and versions does not always yield complete results, and patch and service management, therefore, suffer. We present Net-State, a system for monitoring, storing, and reporting application and operating system version information for a network. NetState gives security and network administrators the ability to know what is running on their networks while allowing for user-managed machines and complex host configurations. Our architecture uses distributed modules to collect network information and a centralized server that stores and issues reports on that collected version information. We discuss some of the challenges to building and operating NetState as well as the legal issues surrounding the promiscuous capture of network data. We conclude that this tool can solve some key problems in network management and has a wide range of possibilities for future uses.

More Details
17 Results
17 Results