Publications

6 Results

Search results

Jump to search filters

Electron backscatter diffraction: A powerful tool for phase identification in the SEM

Materials Research Society Symposium - Proceedings

Michael, Joseph R.; Goehner, Raymond P.

EBSD in the SEM has been developed into a tool that can provide identification of unknown crystalline phases with a spatial resolution that is better than one micrometer. This technique has been applied to a wide range of materials. Use of the HOLZ rings in the EBSD patterns has enabled the reduced unit cell to be determined from unindexed EBSD patterns. This paper introduces EBSD for phase identification and illustrates the technique with examples from metal joining and particle analysis. Reduced unit cell determination from EBSD patterns is then discussed. © 2001 Materials Research Society.

More Details

Small area analysis using micro-diffraction techniques

Goehner, Raymond P.; Tissot, Ralph G.; Michael, Joseph R.

An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 {micro}m to 100 {micro}m. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30{micro}m glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been used for simultaneous element identification which enhances phase identification of unknowns. The x-ray area detector also allows for rapid microstructure information including crystallite orientation and size by directly observing the diffraction rings. These techniques allow for small area analysis that in the past would have been difficult if not impossible to obtain. The future development in x-ray optics and the use of synchrotron sources will allow for the potential of nondestructive submicron x-ray diffraction analysis.

More Details

MicroDiffraction in the Scanning Electron Microscope (SEM)

Goehner, Raymond P.

The identification of crystallographic phases in the scanning electron microscope (SEM) has been limited by the lack of a simple way to obtain electron diffraction data of an unknown while observing the micro structure of the specimen. With the development of Charge Coupled Device (CCD) based detectors, backscattered electron Kikuchi patterns (BEKP), alternately referred to as electron backscattered diffraction patterns (EBSP), can be easily collected. Previously, BEKP has been limited to crystallographic orientation studies due to the poor pattern quality collected with video rate detector systems. With CCD detectors, a typical BEKP can now be acquired from a micron or sub-micron-sized crystal using an exposure time of 1-10 seconds with an accelerating voltage of 10-40 kV and a beam current as low as 0.1 nA. Crystallographic phase analysis using BEKP is unique in that the properly equipped SEM permits high magnification images, BEKP`s, and elemental information to be collected from bulk specimens. BEKP in the SEM has numerous advantages over other electron microscopy crystallographic techniques. The large angular view ( 70 degrees) provided by BEKP and the lack of difficult specimen preparation are distinct advantages of the technique. No sample preparation beyond what is commonly used for SEM specimens is required for BEKP.

More Details

Sensors for process control Focus Team report

Goehner, Raymond P.

At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled ``Semiconductor Technology: Workshop Working Group Reports,`` contained an overall roadmap for the technology characteristics envisioned in integrated circuits (ICs) for the period 1992--2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.

More Details
6 Results
6 Results