This project demonstrates that Chapel programs can interface with MPI-based libraries written in C++ without storing multiple copies of shared data. Chapel is a language for productive parallel computing using global address spaces (PGAS). We identified two approaches to interface Chapel code with the MPI-based Grafiki and Trilinos libraries. The first uses a single Chapel executable to call a C function that interacts with the C++ libraries. The second uses the mmap function to allow separate executables to read and write to the same block of memory on a node. We also encapsulated the second approach in Docker/Singularity containers to maximize ease of use. Comparisons of the two approaches using shared and distributed memory installations of Chapel show that both approaches provide similar scalability and performance.
Borrowing from nature, neural-inspired interception algorithms were implemented onboard a vehicle. To maximize success, work was conducted in parallel within a simulated environment and on physical hardware. The intercept vehicle used only optical imaging to detect and track the target. A successful outcome is the proof-of-concept demonstration of a neural-inspired algorithm autonomously guiding a vehicle to intercept a moving target. This work tried to establish the key parameters for the intercept algorithm (sensors and vehicle) and expand the knowledge and capabilities of implementing neural-inspired algorithms in simulation and on hardware.
The Saturn accelerator has historically lacked the capability to measure time-resolved spectra for its 3-ring bremsstrahlung x-ray source. This project aimed to create a spectrometer called AXIOM to provide this capability. The project had three major development pillars: hardware, simulation, and unfold code. The hardware consists of a ring of 24 detectors around an existing x-ray pinhole camera. The diagnostic was fielded on two shots at Saturn and over 100 shots at the TriMeV accelerator at Idaho Accelerator Center. A new Saturn x-ray environment simulation was created using measured data to validate. This simulation allows for timeresolved spectra computation to compare the experimental results. The AXIOM-Unfold code is a new parametric unfold code using modern global optimizers and uncertainty quantification. The code was written in Python, uses Gitlab version control and issue tracking, and has been developed with long term code support and maintenance in mind.
This report presents the results of the sampling effort and documents all associated field activities including borehole clearing, soil sample collection, storage and transportation to the analytical laboratories, borehole backfilling and surface restoration, and storage of investigation-derived waste (IDW) for future profiling and disposal by SNL/CA waste management personnel.
Thermoset polymers (e.g. epoxies, vulcanizable rubbers, polyurethanes, etc.) are crosslinked materials with excellent thermal, chemical, and mechanical stability; these properties make thermoset materials attractive for use in harsh applications and environments. Unfortunately, material robustness means that these materials persist in the environment with very slow degradation over long periods of time. Balancing the benefits of material performance with sustainability is a challenge in need of novel solutions. Here, we aimed to address this challenge by incorporating boronic acid-amine complexes into epoxy thermoset chemistries, facilitating degradation of the material under pH neutral to alkaline conditions; in this scenario, water acts as an initiator to remove boron species, creating a porous structure with an enhanced surface area that makes the material more amenable to environmental degradation. Furthermore, the expulsion of the boron leaves the residual pores rich in amines which can be exploited for CO2 absorption or other functionalization. We demonstrated the formation of novel boron species from neat mixing of amine compounds with boric acid, including one complex that appears highly stable under nitrogen atmosphere up to 600 °C. While degradation of the materials under static, alkaline conditions (our “trigger”) was inconclusive at the time of this writing, dynamic conditions appeared more promising. Additionally, we showed that increasing boronic acid content created materials more resistant to thermal degradation, thus improving performance under typical high temperature use conditions.
Time-resolved particle image velocimetry (TR-PIV) has become widespread in fluid dynamics. Essentially a velocity field movie, the dynamic content provides temporal as well as spatial information, in contrast to conventional PIV offering only statistical ensembles of flow quantities. From these time series arise further analyses such as accelerometry, space-time correlations, frequency spectra of turbulence including spatial variability, and derivation of pressure fields and forces. The historical development of TR-PIV is chronicled, culminating in an assessment of the current state of technology in high-repetition-rate lasers and high-speed cameras. Commercialization of pulse-burst lasers has expanded TR-PIV into more flows, including the compressible regime, and has achieved MHz rates. Particle response times and peak locking during image interrogation require attention but generally are not impediments to success. Accuracy considerations are discussed, including the risks of noise and aliasing in spectral content. Oversampled TR-PIV measurements allow use of multi-frame image interrogation methods, which improve the precision of the correlation and raise the velocity dynamic range of PIV. In combination with volumetric methods and data assimilation, a full four-dimensional description of a flow is not only achievable but becoming standardized. A survey of exemplary applications is followed by a few predictions concerning the future of TR-PIV.
We successfully demonstrated the utility of surface science techniques - namely scanning probe microscopy and thermal desorption spectroscopy - on three different material systems: incipient soot formed during fossil fuel combustion, surface oxides passivating polycrystalline nickel hydrogen uptake, and aluminum hydride cluster formation underpinning solid-state hydrogen fuel storage. For all three material systems, surface science techniques haven proven to probe intricate nanoscale phenomena that are critical to macroscale material behavior. This LDRD has gained insight into early-stage pollution formation, the impacts of common contaminants on tritium flow regulation, and the limitations of solid-state hydrogen fuel storage. Our results support the diversification of national energy technologies.
In this paper, we develop a method which we call OnlineGCP for computing the Generalized Canonical Polyadic (GCP) tensor decomposition of streaming data. GCP differs from traditional canonical polyadic (CP) tensor decompositions as it allows for arbitrary objective functions which the CP model attempts to minimize. This approach can provide better fits and more interpretable models when the observed tensor data is strongly non-Gaussian. In the streaming case, tensor data is gradually observed over time and the algorithm must incrementally update a GCP factorization with limited access to prior data. In this work, we extend the GCP formalism to the streaming context by deriving a GCP optimization problem to be solved as new tensor data is observed, formulate a tunable history term to balance reconstruction of recently observed data with data observed in the past, develop a scalable solution strategy based on segregated solves using stochastic gradient descent methods, describe a software implementation that provides performance and portability to contemporary CPU and GPU architectures and integrates with Matlab for enhanced usability, and demonstrate the utility and performance of the approach and software on several synthetic and real tensor data sets.
A cohesive phase-field model of ductile fracture in a finite-deformation setting is presented. The model is based on a free-energy function in which both elastic and plastic work contributions are coupled to damage. Using a strictly variational framework, the field evolution equations, damage kinetics, and flow rule are jointly derived from a scalar least-action principle. Particular emphasis is placed on the use of a rational function for the stress degradation that maintains a fixed effective strength with decreasing regularization length. The model is employed to examine crack growth in pure mode-I problems through the generation of crack growth resistance (J-R) curves. In contrast to alternative models, the current formulation gives rise to J-R curves that are insensitive to the regularization length. Numerical evidence suggests convergence of local fields with respect to diminishing regularization length as well.
This Content Migration Plan provides a framework and methodology for managing and executing the migration of content to the NEFC Program’s on-premises SharePoint 2016 instance, as well as guidelines regarding how to ensure that Knowledge Management Program content, both during and after the migration, is tagged properly. Analysis continues to develop a migration plan for a SharePoint Online instance in a Cloud environment.
The objective of this study was to evaluate the impact of alternative ventilation configurations on airflow patterns and potential exposure risks in office spaces. Two existing conference rooms at Sandia NM were modeled using Computational Fluid Dynamics (CFD) simulations to characterize airflow patterns and potential airborne exposure risks in well-mixed and once-through (through-flow) ventilation conditions. Multiple scenarios were studied to evaluate the impact of occupancy, Plexiglass barriers, and a modified-return airflow configuration. Experimental and visualization tests were also conducted to validate the well-mixed and through-flow models and findings. The simulations demonstrated that the modified-return airflow configuration that promoted through-flow conditions reduced pathogen concentrations within the space compared to the well-mixed airflow configuration; occupancy reduction only reduced the number of exposed individuals, and Plexiglass barriers had almost no effect. The experimentally measured air speeds at nine anemometer locations generally matched the simulated airflow velocities, and a fog-purge visualization test was also consistent with simulated results of plume movement and dissipation. The visualization tests demonstrated improvements in air change rate with the modified return, which promoted through-flow conditions, versus the original well-mixed ventilation configuration. The results of this study demonstrate that minor modifications to a space that promote through-flow conditions can improve air quality and reduce pathogen concentrations. Additional airflow modeling and testing of alternative occupied space configurations are recommended to further inform room designs that mitigate airborne exposure risks for occupants.
Radiographic diodes focus an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the RITS-6 Inductive Voltage Adder (IVA) driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode-cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analyzation of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below ~ few mm. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle-behavior of SMP shots is made to lend credence to the inference. There is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.
This document summarizes the findings of a review of published literature regarding the potential impacts of electromagnetic pulse (EMP) and geomagnetic disturbance (GMD) phenomena on oil and gas pipeline systems. The impacts of telluric currents on pipelines and their associated cathodic protection systems has been well studied. The existing literature describes implications for corrosion protection system design and monitoring to mitigate these impacts. Effects of an EMP on pipelines is not a thoroughly explored subject. Most directly related articles only present theoretical models and approaches rather than specific analyses and in-field testing. Literature on SCADA components and EMP is similarly sparse and the existing articles show a variety of impacts to control system components that range from upset and damage to no effect. The limited research and the range of observed impacts for the research that has been published suggests the need for additional work on GMD and EMP and natural gas SCADA components.
Part distortion and residual stress are critical factors for metal additive manufacturing (AM) because they can lead to high failure rates during both manufacturing and service. We present a topology optimization approach that incorporates a fast AM process simulation at each design iteration to provide predictions of manufacturing outcomes (i.e., residual stress, distortion, residual elastic energy) that can be optimized or constrained. The details of the approach and implementation are discussed, and an example design is presented that illustrates the efficacy of the method.
This SNL document contains requested radiological survey information, as part of the documentation for the MLU shipment performed by the LANL MLU team on October 20th. The survey was performed in TA-5, on October 20th, 2021. This survey was for radiological coverage for the disassembly of two TRUPACTs, the assembly and loading of their payloads, and the reassembly of the TRUPACTs.
Understanding the capture of charge carriers by colour centres in semiconductors is important for the development of novel forms of sensing and quantum information processing, but experiments typically involve ensemble measurements, often impacted by defect proximity. Here we show that confocal fluorescence microscopy and magnetic resonance can be used to induce and probe charge transport between individual nitrogen-vacancy centres in diamond at room temperature. In our experiments, a ‘source’ nitrogen vacancy undergoes optically driven cycles of ionization and recombination to produce a stream of photogenerated carriers, one of which is subsequently captured by a ‘target’ nitrogen vacancy several micrometres away. We use a spin-to-charge conversion scheme to encode the spin state of the source colour centre into the charge state of the target, which allows us to set an upper bound to carrier injection from other background defects. We attribute our observations to the action of unscreened Coulomb potentials producing giant carrier capture cross-sections, orders of magnitude greater than those measured in ensembles.