This document summarizes the findings of a review of published literature regarding the potential impacts of electromagnetic pulse (EMP) and geomagnetic disturbance (GMD) phenomena on oil and gas pipeline systems. The impacts of telluric currents on pipelines and their associated cathodic protection systems has been well studied. The existing literature describes implications for corrosion protection system design and monitoring to mitigate these impacts. Effects of an EMP on pipelines is not a thoroughly explored subject. Most directly related articles only present theoretical models and approaches rather than specific analyses and in-field testing. Literature on SCADA components and EMP is similarly sparse and the existing articles show a variety of impacts to control system components that range from upset and damage to no effect. The limited research and the range of observed impacts for the research that has been published suggests the need for additional work on GMD and EMP and natural gas SCADA components.
In the planning for FY2020 in the U.S. DOE NE-81 Spent Fuel and Waste Science and Technology (SFWST) Campaign, the DOE requested development of a plan for activities in the Disposal Research (DR) Research and Development (R&D) over a five (5)-year period, and DOE requested periodic updates to this plan. The DR R&D 5-year plan was provided to the DOE based on the FY2020 priorities and program structure (Sassani et al., 2020) and represents a strategic guide to the work within the DR R&D technical areas (i.e., the Control Accounts), focusing on the highest priority technical thrusts. This FY2021 report is the first update to the DR R&D 5-year plan for the SFWST Campaign DR R&D activities. This 5-year plan will be a living document and is planned to be updated periodically to provide review of accomplishments and for prioritization changes based on aspects including mission progress, external technical work, and changes in SFWST Campaign objectives and/or funding levels (i.e., Program Direction). The updates to this 5-year plan will address the DR R&D that has been completed (accomplishments) and the additional knowledge gaps to be investigated, with any updates to the DR R&D priorities for the next stages of activities.
Ni-Cr alloys exhibit oscillatory segregation behaviors near low index surfaces, in which the preferred segregation species changes from Ni in the first layer to Cr in the second layer. In many dilute-alloy systems, this oscillatory pattern is attributed to the elastic release of stresses in the local lattice around the segregating solute or impurity atom. These stresses are mostly thought to originate from mismatches in the atomic size of the solute and host atoms. In Ni-Cr alloys, however, an appreciable mismatch in atomic size is not present, leading to questions about the origins of the oscillatory behavior in this alloy. Using density functional theory, we have modeled the segregation of a single Cr atom in the (100) and (111) surfaces of FCC Ni, an alloy which exhibits this oscillatory behavior. Using Bader charge analysis, we show that the negative energy correlates directly with the amount of charge on the Cr atom. As Ni atoms strip valence charge from the Cr, the Cr contracts slightly in size. The greatest contraction and highest positive charge for the Cr occurs when it is in the second layer of the surface where the system exhibits the oscillating negative segregation energy. We then find that this behavior persists in other alloy systems (Ag-Nb, Cu-Cr, Pt-Nb, and Pt-V), which exhibit similar atomic radii and electronegativity differences between host and solute to Ni-Cr. These represent alloys in which the host metal exhibits an FCC ground-state structure while the solute metal exhibits a BCC ground-state structure.
In WASH - 1400, external exposure from the finite radioactive cloud (cloudshine) is calculated by assuming that the cloud is semi-infinite, the concentration of radioactive material is uniform, and by using a correction factor to account for these approximations. This correction factor is originally based upon formulations by Healy and depends on the effective size of the plume and the distance from the plume center to the receptor. The range of the finite cloud dose correction factor table from WASH - 1400 developed using Healy formulations can be exceeded in certain situations. When the range of the table is exceeded, no extrapolation is performed; rather interpolation at the edge of the table is performed per WASH - 1400. The tabulated values of these finite cloud dose correction factors from WASH - 1400 and the interpolation at the edge of the table have been used in MACCS since its creation. An expanded table of finite cloud dose correction factors is one way to reduce the need of using interpolation at the edge of the table. The generation of an expanded finite cloud dose correction factor table for future use in MACCS is documented in this report.
A cohesive phase-field model of ductile fracture in a finite-deformation setting is presented. The model is based on a free-energy function in which both elastic and plastic work contributions are coupled to damage. Using a strictly variational framework, the field evolution equations, damage kinetics, and flow rule are jointly derived from a scalar least-action principle. Particular emphasis is placed on the use of a rational function for the stress degradation that maintains a fixed effective strength with decreasing regularization length. The model is employed to examine crack growth in pure mode-I problems through the generation of crack growth resistance (J-R) curves. In contrast to alternative models, the current formulation gives rise to J-R curves that are insensitive to the regularization length. Numerical evidence suggests convergence of local fields with respect to diminishing regularization length as well.
In this paper, we develop a method which we call OnlineGCP for computing the Generalized Canonical Polyadic (GCP) tensor decomposition of streaming data. GCP differs from traditional canonical polyadic (CP) tensor decompositions as it allows for arbitrary objective functions which the CP model attempts to minimize. This approach can provide better fits and more interpretable models when the observed tensor data is strongly non-Gaussian. In the streaming case, tensor data is gradually observed over time and the algorithm must incrementally update a GCP factorization with limited access to prior data. In this work, we extend the GCP formalism to the streaming context by deriving a GCP optimization problem to be solved as new tensor data is observed, formulate a tunable history term to balance reconstruction of recently observed data with data observed in the past, develop a scalable solution strategy based on segregated solves using stochastic gradient descent methods, describe a software implementation that provides performance and portability to contemporary CPU and GPU architectures and integrates with Matlab for enhanced usability, and demonstrate the utility and performance of the approach and software on several synthetic and real tensor data sets.
Radiographic diodes focus an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the RITS-6 Inductive Voltage Adder (IVA) driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode-cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analyzation of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below ~ few mm. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle-behavior of SMP shots is made to lend credence to the inference. There is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.
This project demonstrates that Chapel programs can interface with MPI-based libraries written in C++ without storing multiple copies of shared data. Chapel is a language for productive parallel computing using global address spaces (PGAS). We identified two approaches to interface Chapel code with the MPI-based Grafiki and Trilinos libraries. The first uses a single Chapel executable to call a C function that interacts with the C++ libraries. The second uses the mmap function to allow separate executables to read and write to the same block of memory on a node. We also encapsulated the second approach in Docker/Singularity containers to maximize ease of use. Comparisons of the two approaches using shared and distributed memory installations of Chapel show that both approaches provide similar scalability and performance.
Background: Blockchain distributed ledger technology is just starting to be adopted in genomics and healthcare applications. Despite its increased prevalence in biomedical research applications, skepticism regarding the practicality of blockchain technology for real-world problems is still strong and there are few implementations beyond proof-of-concept. We focus on benchmarking blockchain strategies applied to distributed methods for sharing records of gene-drug interactions. We expect this type of sharing will expedite personalized medicine. Basic Procedures: We generated gene-drug interaction test datasets using the Clinical Pharmacogenetics Implementation Consortium (CPIC) resource. We developed three blockchain-based methods to share patient records on gene-drug interactions: Query Index, Index Everything, and Dual-Scenario Indexing. Main Findings: We achieved a runtime of about 60 s for importing 4,000 gene-drug interaction records from four sites, and about 0.5 s for a data retrieval query. Our results demonstrated that it is feasible to leverage blockchain as a new platform to share data among institutions. Principal Conclusions: We show the benchmarking results of novel blockchain-based methods for institutions to share patient outcomes related to gene-drug interactions. Our findings support blockchain utilization in healthcare, genomic and biomedical applications. The source code is publicly available at https://github.com/tsungtingkuo/genedrug.
A mass property calculator has been developed to compute the moment of inertia properties of an assemblage of parts that make up a system. The calculator can take input from spreadsheets or Creo mass property files or it can be interfaced with Phoenix Integration Model Center. The input must include the centroidal moments of inertia of each part with respect to its local coordinates, the location of the centroid of each part in the system coordinates and the Euler angles needed to rotate from the part coordinates to the system coordinates. The output includes the system total mass, centroid and mass moment of inertia properties. The input/output capabilities allow the calculator to interface with external optimizers. In addition to describing the calculator, this document serves as its user's manual. The up-to-date version of the calculator can be found in the Git repository https://cee-gitlab.sandia.gov/cj?ete/mass-properties-calculator.
Drilling systems that use downhole rotation must react torque either through the drill-string or near the motor to achieve effective drilling performance. Problems with drill-string loading such as buckling, friction, and twist become more severe as hole diameter decreases. Therefore, for small holes, reacting torque downhole without interfering with the application of weight-on-bit, is preferred. In this paper, we present a novel mechanism that enables effective and controllable downhole weight on bit transmission and torque reaction. This scalable design achieves its unique performance through four key features: (1) mechanical advantage based on geometry, (2) direction dependent behavior using rolling and sliding contact, (3) modular scalability by combining modules in series, and (4) torque reaction and weight on bit that are proportional to applied axial force. As a result, simple mechanical devices can be used to react large torques while allowing controlled force to be transmitted to the drill bit. We outline our design, provide theoretical predictions of performance, and validate the results using full-scale testing. The experimental results include laboratory studies as well as limited field testing using a percussive hammer. These results demonstrate effective torque reaction, axial force transmission, favorable scaling with multiple modules, and predictable performance that is proportional to applied force.
Reeves, Michael J.; Tian, Dave J.; Bianchi, Antonio; Berkay Celik ZBerkay C.
Container escapes enable the adversary to execute code on the host from inside an isolated container. Notably, these high severity escape vulnerabilities originate from three sources: (1) container profile misconfigurations, (2) Linux kernel bugs, and (3) container runtime vulnerabilities. While the first two cases have been studied in the literature, no works have investigated the impact of container runtime vulnerabilities. In this paper, to fill this gap, we study 59 CVEs for 11 different container runtimes. As a result of our study, we found that five of the 11 runtimes had nine publicly available PoC container escape exploits covering 13 CVEs. Our further analysis revealed all nine exploits are the result of a host component leaked into the container. Here, we apply a user namespace container defense to prevent the adversary from leveraging leaked host components and demonstrate that the defense stops seven of the nine container escape exploits.
Echeverria, Marco J.; Galitskiy, Sergey; Mishra, Avanish; Dingreville, Remi P.; Dongare, Avinash M.
A hybrid atomic-scale and continuum-modeling framework is used to study the microstructural evolution during the laser-induced shock deformation and failure (spallation) of copper microstructures. A continuum two-temperature model (TTM) is used to account for the interaction of Cu atoms with a laser in molecular dynamics (MD) simulations. The MD-TTM simulations study the effect of laser-loading conditions (laser fluence) on the microstructure (defects) evolution during various stages of shock wave propagation, reflection, and interaction in single-crystal (sc) Cu systems. In addition, the role of the microstructure is investigated by comparing the defect evolution and spall response of sc-Cu and nanocrystalline Cu systems. The defect (stacking faults and twin faults) evolution behavior in the metal at various times is further characterized using virtual in situ selected area electron diffraction and x-ray diffraction during various stages of evolution of microstructure. The simulations elucidate the uncertain relation between spall strength and strain-rate and the much stronger relation between the spall strength and the temperatures generated due to laser shock loading for the small Cu sample dimensions considered here.
Energy utilities are evaluating emerging energy technologies to reduce reliance on carbon as an energy carrier. Hydrogen has been identified as a potential substitute for carbon-based fuels that can be blended into other gaseous energy carriers, such as natural gas. However, hydrogen blending into natural gas has important implications on safety which need to be evaluated. Designers and installers of systems that utilize hydrogen gas blending into natural gas distribution systems need to adhere to local building codes and engage with the authority having jurisdiction (AHJ) for safety and permitting approvals. These codes and standards must be considered to understand where safety gaps might be apparent when injecting hydrogen into the natural gas infrastructure. This report generates a list of relevant codes and standards for hydrogen blending on existing, upgraded, or new pipelines. Additionally, a preliminary assessment was made to identify the codes and standards that need to be modified to enable this technology as well as potential gaps due to the unique nature and safety concerns of gaseous hydrogen.
In this work, we have used the well-understood quantum Hall (QH) stripes in high quality two-dimensional electron gases to mimic charge stripes in high transition temperature (Tc) superconductors. The science question we want to address is “Can QH stripes mimic high Tc superconductor stripes and provide a controlled experimental setup to pin-down the role of stripes in high Tc superconductivity?”. We have observed anomalous superconducting transition like behavior in GaAs double quantum well systems (DQWs) when each quantum well (QW) is tuned to the charge stripe states but with different Landau level fillings. Furthermore, we have shown that the transition like behavior is sharper in the DQWs when the two QWs are more strongly coupled. Our results suggest, for the first time, experimental evidence of the paired charge stripes model, which might lead to room-temperature superconductors that have enormously wide applications in computing, energy, and transportation industries. Advancing the science of high transition temperature superconductivity will have a profound impact in advancing energy technologies, ranging from the next generation microchips, new energy transfer grid to public transportation, and thus is important to nation’s energy security and relevant across the landscape of many mission spaces. Sandia has been a leader in materials science research and development. The proposed research takes advantage of Sandia’s state-ofthe-art MBE facilities at the Center for Integrated Nanotechnologies (CINT) and utilizes Sandia’s extensive advanced materials characterization resources. We envision a significant impact on the nation’s energy research and security challenges by investing in this research.
Time-resolved particle image velocimetry (TR-PIV) has become widespread in fluid dynamics. Essentially a velocity field movie, the dynamic content provides temporal as well as spatial information, in contrast to conventional PIV offering only statistical ensembles of flow quantities. From these time series arise further analyses such as accelerometry, space-time correlations, frequency spectra of turbulence including spatial variability, and derivation of pressure fields and forces. The historical development of TR-PIV is chronicled, culminating in an assessment of the current state of technology in high-repetition-rate lasers and high-speed cameras. Commercialization of pulse-burst lasers has expanded TR-PIV into more flows, including the compressible regime, and has achieved MHz rates. Particle response times and peak locking during image interrogation require attention but generally are not impediments to success. Accuracy considerations are discussed, including the risks of noise and aliasing in spectral content. Oversampled TR-PIV measurements allow use of multi-frame image interrogation methods, which improve the precision of the correlation and raise the velocity dynamic range of PIV. In combination with volumetric methods and data assimilation, a full four-dimensional description of a flow is not only achievable but becoming standardized. A survey of exemplary applications is followed by a few predictions concerning the future of TR-PIV.
Current wind turbine blade materials may not be damage tolerant to the extent necessary to optimize the Levelized Cost of Energy (LCOE) of wind energy plants. Traditionally, wind turbine blades have been designed using a safe-life approach, but advances in inspection techniques and structural health monitoring solutions give rise to the opportunity to design wind turbine blades using a damage tolerant approach. Materials selection is a key element of da mage tolerant design, so the extent of the damage tolerance of alternative materials has been analyzed through a literature review and discussions with industry leaders. Fabrics and resin selection significantly affect the damage tolerance of composites. Changes to fabric architecture may include through-the-thickness (TTT) fibers, stretch-broken carbon fiber (SBCF) composites, and aligned discontinuous fiber reinforced composites (ADFRCs). Previous research has demonstrated that using TTT fibers in creases damage tolerance, but additional research is necessary to demonstrate the effectiveness of SBCFs and ADFRCs in mitigating damage. Several studies have demonstrated increased damage tolerance when toughened resin systems are used. In addition to toughened resin systems, thermoplastics have been shown to be tougher than thermosets. However, thermosets have been traditionally preferred in wind turbine blade manufacturing due to ease of manufacturing. Thermoplastic resin system s have been developed that can be used with conventional manufacturing methods but have yet to be studied for its damage tolerant capabilities. Furthermore, cost and stress analyses on where to effectively implement TTT fibers, SBCF composites, ADFRCs, and toughened resin systems must be executed prior to incorporating new materials into wind turbine blade manufacturing.
Performance assessment (PA) of geologic radioactive waste repositories requires three-dimensional simulation of highly nonlinear, thermo-hydro-mechanical-chemical (THMC), multiphase flow and transport processes across many kilometers and over tens to hundreds of thousands of years. Integrating the effects of a near-field geomechanical process (i.e. buffer swelling) into coupled THC simulations through reduced-order modeling, rather than through fully coupled geomechanics, can reduce the dimensionality of the problem and improve computational efficiency. In this study, PFLOTRAN simulations model a single waste package in a shale host rock repository, where re-saturation of a bentonite buffer causes the buffer to swell and exert stress on a highly fractured disturbed rock zone (DRZ). Three types of stress-dependent permeability functions (exponential, modified cubic, and Two-part Hooke's law models) are implemented to describe mechanical characteristics of the system. Our modeling study suggests that compressing fractures reduces DRZ permeability, which could influence the rate of radionuclide transport and exchange with corrosive species in host rock groundwater that could accelerate waste package degradation. Less permeable shale host rock delays buffer swelling, consequently retarding DRZ permeability reduction as well as chemical transport within the barrier system.
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.
We successfully demonstrated the utility of surface science techniques - namely scanning probe microscopy and thermal desorption spectroscopy - on three different material systems: incipient soot formed during fossil fuel combustion, surface oxides passivating polycrystalline nickel hydrogen uptake, and aluminum hydride cluster formation underpinning solid-state hydrogen fuel storage. For all three material systems, surface science techniques haven proven to probe intricate nanoscale phenomena that are critical to macroscale material behavior. This LDRD has gained insight into early-stage pollution formation, the impacts of common contaminants on tritium flow regulation, and the limitations of solid-state hydrogen fuel storage. Our results support the diversification of national energy technologies.
This report provides detailed documentation of the algorithms that where developed and implemented in the Plato software over the course of the Optimization-based Design for Manufacturing LDRD project.
Co-deposited, immiscible alloy systems form hierarchical microstructures under specific deposition conditions that accentuate the difference in constituent element mobility. The mechanism leading to the formation of these unique hierarchical morphologies during the deposition process is difficult to identify, since the characterization of these microstructures is typically carried out post-deposition. We employ phase-field modeling to study the evolution of microstructures during deposition combined with microscopy characterization of experimentally deposited thin films to reveal the origin of the formation mechanism of hierarchical morphologies in co-deposited, immiscible alloy thin films. Our results trace this back to the significant influence of a local compositional driving force that occurs near the surface of the growing thin film. We show that local variations in the concentration of the vapor phase near the surface, resulting in nuclei (i.e., a cluster of atoms) on the film’s surface with an inhomogeneous composition, can trigger the simultaneous evolution of multiple concentration modulations across multiple length scales, leading to hierarchical morphologies. We show that locally, the concentration must be above a certain threshold value in order to generate distinct hierarchical morphologies in a single domain.