Publications

11 Results
Skip to search filters

An X-ray Intensity Operations Monitor (AXIOM) (Final LDRD Project Report)

Ulmen, Benjamin A.; Webb, Timothy J.; Radtke, Gregg A.; Olson, Aaron J.; Depriest, Kendall D.; Coffey, Sean K.; Looker, Quinn M.; Gao, Xujiao G.; Nicholas, Ryder N.; Edwards, Jarrod D.; McCourt, Andrew L.; Bell, Kate S.

The Saturn accelerator has historically lacked the capability to measure time-resolved spectra for its 3-ring bremsstrahlung x-ray source. This project aimed to create a spectrometer called AXIOM to provide this capability. The project had three major development pillars: hardware, simulation, and unfold code. The hardware consists of a ring of 24 detectors around an existing x-ray pinhole camera. The diagnostic was fielded on two shots at Saturn and over 100 shots at the TriMeV accelerator at Idaho Accelerator Center. A new Saturn x-ray environment simulation was created using measured data to validate. This simulation allows for timeresolved spectra computation to compare the experimental results. The AXIOM-Unfold code is a new parametric unfold code using modern global optimizers and uncertainty quantification. The code was written in Python, uses Gitlab version control and issue tracking, and has been developed with long term code support and maintenance in mind.

More Details

Measuring Saturn's Electron Beam Energy Spectrum using Webb's Wedges

Ulmen, Benjamin A.; Webb, Timothy J.; McCourt, Andrew L.; Coffey, Sean K.

It is very difficult to measure the voltage of the load on the Saturn accelerator. Time-resolved measurements such as vacuum voltmeters and V-dot monitors are impractical at best and completely change the pulsed power behavior at the load at worst. We would like to know the load voltage of the machine so that we could correctly model the radiation transport and tune our x-ray unfold methodology and circuit simulations of the accelerator. Step wedges have been used for decades as a tool to measure the end - point energies of high energy particle beams. Typically, the technique is used for multi-megavolt accelerators, but we have adapted it to Saturn's modest <2 MV end-point energy and modified the standard bremsstrahlung x-ray source to extract the electron beam without changing the physics of the load region. We found clear evidence of high energy electrons >2 MV. We also attempted to unfold an electron energy spectrum using a machine learning algorithm and while these results come with large uncertainties, they qualitatively agree with PIC simulation results.

More Details

Coarse spectral characterization of warm x-rays at the Z facility using a filtered thermoluminescent dosimeter array

Review of Scientific Instruments

Harper-Slaboszewicz, V.H.; Ulmen, Benjamin A.; Parzyck, Christopher T.; Ampleford, David A.; McCourt, Andrew L.; Bell, Kate S.; Coverdale, Christine A.

A new collimated filtered thermoluminescent dosimeter (TLD) array has been developed at the Z facility to characterize warm x-rays (hν > 10 keV) produced by Z pinch radiation sources. This array includes a Kapton debris shield assembly to protect the TLDs from the source debris, a collimator array to limit the field of view of the TLDs to the source region, a filter wheel containing filters of aluminum, copper and tungsten up to 3 mm thick to independently filter each TLD, and a hermetically sealed cassette containing the TLDs as well as tungsten shielding on the sides and back of the array to minimize scattered radiation reaching the TLDs. Here experimental results from a krypton gas puff and silver wire array shot are analyzed using two different functional forms of the energy spectrum to demonstrate the ability of this diagnostic to consistently extend the upper end of the x-ray spectrum characterization from ~50 keV to >1 MeV.

More Details

Parallel operation of multiple closely spaced small aspect ratio rod pinches

IEEE Transactions on Plasma Science

Harper-Slaboszewicz, V.H.; Leckbee, Joshua L.; Bennett, Nichelle; Madrid, Elizabeth A.; Rose, David V.; Thoma, Carsten; Welch, Dale R.; Lake, Patrick W.; McCourt, Andrew L.

A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and postshot analysis of the experimental results are supported by 3-D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface of the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.

More Details
11 Results
11 Results