Multi-site Integrated Optical Addressing of Trapped Ions
presentation for DAMOP 2024
presentation for DAMOP 2024
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
CLEO: Science and Innovations, CLEO: S and I 2024 in Proceedings CLEO 2024, Part of Conference on Lasers and Electro-Optics
We demonstrate evanescently coupled waveguide integrated silicon photonic avalanche photodiodes designed for single photon detection for quantum applications. Simulation, high responsivity, and record low dark currents for evanescently coupled devices are presented.
2024 Conference on Lasers and Electro-Optics, CLEO 2024
We demonstrate for the first time waveguide integrated cascaded germanium photodetector arrays operated as photocells. We characterize several different array designs, and discuss their effects on voltage and photocurrent performance parameters.
Abstract not provided.
CLEO: Fundamental Science, CLEO:FS 2023
Low loss silicon nitride ring resonator reflectors provide feedback to a III/V gain chip, achieving single-mode lasing at 772nm. The Si3N4 is fabricated in a CMOS foundry compatible process that achieves loss values of 0.036dB/cm.
CLEO: Science and Innovations, CLEO:S and I 2023
We demonstrate piezo-optomechanical phase control in a c-band silicon-photonic resonator using CMOS-compatible AlN microactuators. We achieve a frequency tuning response of 26.91 ± 0.77 MHz/V DC, operating at picowatt to nanowatt power levels.
CLEO: Science and Innovations, CLEO:S and I 2023
TFLN/silicon photonic modulators featuring active silicon photonic components are reported with a Vπ of 3.6 Vcm. This hybrid architecture utilizes the bottom of the buried oxide as the bonding surface which features minimum topology.
Nature Communications
The growing demand for bandwidth makes photonic systems a leading candidate for future telecommunication and radar technologies. Integrated photonic systems offer ultra-wideband performance within a small footprint, which can naturally interface with fiber-optic networks for signal transmission. However, it remains challenging to realize narrowband (∼MHz) filters needed for high-performance communications systems using integrated photonics. In this paper, we demonstrate all-silicon microwave-photonic notch filters with 50× higher spectral resolution than previously realized in silicon photonics. This enhanced performance is achieved by utilizing optomechanical interactions to access long-lived phonons, greatly extending available coherence times in silicon. We use a multi-port Brillouin-based optomechanical system to demonstrate ultra-narrowband (2.7 MHz) notch filters with high rejection (57 dB) and frequency tunability over a wide spectral band (6 GHz) within a microwave-photonic link. We accomplish this with an all-silicon waveguide system, using CMOS-compatible fabrication techniques.
Nature Communications
The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10−6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
As trapped ion systems add more ions to allow for increasingly sophisticated quantum processing and sensing capabilities, the traditional optical-mechanical laboratory infrastructure that make such systems possible are in some cases the limiting factor in further growth of the systems. One promising solution is to integrate as many, if not all, optical components such as waveguides and gratings, single-photon detectors, and high extinction ratio optical switches/modulators either into ion traps themselves or into auxiliary devices that can be easily integrated with ion traps. Here we report on recent efforts at Sandia National Laboratories to include integrated photonics in our surface ion trap platforms.
2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings
We demonstrate an optical waveguide device capable of supporting the optical power necessary for trapping a single atom or a cold-atom ensemble with evanescent fields. Our photonic integrated platform successfully manages optical powers of ~30mW.
Physical Review Letters
The canonical beam splitter - a fundamental building block of quantum optical systems - is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10-4) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.
Physical Review X
We report on the characterization of heating rates and photoinduced electric charging on a microfabricated surface ion trap with integrated waveguides. Microfabricated surface ion traps have received considerable attention as a quantum information platform due to their scalability and manufacturability. Here, we characterize the delivery of 435-nm light through waveguides and diffractive couplers to a single ytterbium ion in a compact trap. We measure an axial heating rate at room temperature of 0.78±0.05 q/ms and see no increase due to the presence of the waveguide. Furthermore, the electric field due to charging of the exposed dielectric outcoupler settles under normal operation after an initial shift. The frequency instability after settling is measured to be 0.9 kHz.
Abstract not provided.
Abstract not provided.
Optics Express
We demonstrate an optical waveguide device, capable of supporting the high, invacuum, optical power necessary for trapping a single atom or a cold atom ensemble with evanescent fields. Our photonic integrated platform, with suspended membrane waveguides, successfully manages optical powers of 6 mW (500 μm span) to nearly 30 mW (125 μm span) over an un-tethered waveguide span. This platform is compatible with laser cooling and magnetooptical traps (MOTs) in the vicinity of the suspended waveguide, called the membrane MOT and the needle MOT, a key ingredient for efficient trap loading. We evaluate two novel designs that explore critical thermal management features that enable this large power handling. This work represents a significant step toward an integrated platform for coupling neutral atom quantum systems to photonic and electronic integrated circuits on silicon.
Abstract not provided.
Optics InfoBase Conference Papers
We present narrowband RF-photonic filters in an integrated silicon platform. Using Brillouin interactions, the filters yield narrowband (∼MHZ) filter bandwidths with high signal rejection, and demonstrate tunability over a wide (∼GHz) frequency range.
Optics Express
Passive silicon photonic waveguides are exposed to gamma radiation to understand how the performance of silicon photonic integrated circuits is affected in harsh environments such as space or high energy physics experiments. The propagation loss and group index of the mode guided by these waveguides is characterized by implementing a phase sensitive swept-wavelength interferometric method. We find that the propagation loss associated with each waveguide geometry explored in this study slightly increases at absorbed doses of up to 100 krad (Si). The measured change in group index associated with the same waveguide geometries is negligibly changed after exposure. Additionally, we show that the post-exposure degradation of these waveguides can be improved through heat treatment.