Publications

Results 66801–67000 of 99,299

Search results

Jump to search filters

Pyrometry simulator (pyrosim) for diagnostic design

Dolan, Daniel H.

Signal estimates are crucial to the design of time-resolved pyrometry measurements. These estimates affect fundamental design decisions, including the optical relay (fiber versus open beam), spectral range (visible or infrared), and amplification needs (possibly at the expense of time resolution). The pyrosim program makes such estimates, allowing the collected power, photon flux, and measured signal to be determined in a broad range of pyrometry measurements. Geometrical collection limits can be applied; sample emissivity, transfer efficiency, and detector sensitivity may also be specified, either as constants or functions of wavelength.

More Details

Dynamic heat capacity of the east model and of a bead-spring polymer model

Mccoy, John D.; Brown, Jonathan R.; Adolf, Douglas B.

In this report we have presented a brief review of the glass transition and one means of characterizing glassy materials: linear and nonlinear thermodynamic oscillatory experiments to extract the dynamic heat capacity. We have applied these methods to the east model (a variation of the Ising model for glass forming systems) and a simple polymeric system via molecular dynamics simulation, and our results match what is seen in experiment. For the east model, since the dynamics are so simple, a mathematical model is developed that matches the simulated dynamics. For the polymeric system, since the system is a simulation, we can instantaneously 'quench' the system - removing all vibrational energy - to separate the vibrational dynamics from dynamics associated with particle rearrangements. This shows that the long-time glassy dynamics are due entirely to the particle rearrangements, i.e. basin jumping on the potential energy landscape. Finally, we present an extension of linear dynamic heat capacity to the nonlinear regime.

More Details

Standoff ultraviolet raman scattering detection of trace levels of explosives

Reichardt, Thomas A.; Bisson, Scott E.; Kulp, Thomas J.

Ultraviolet (UV) Raman scattering with a 244-nm laser is evaluated for standoff detection of explosive compounds. The measured Raman scattering albedo is incorporated into a performance model that focused on standoff detection of trace levels of explosives. This model shows that detection at {approx}100 m would likely require tens of seconds, discouraging application at such ranges, and prohibiting search-mode detection, while leaving open the possibility of short-range point-and-stare detection. UV Raman spectra are also acquired for a number of anticipated background surfaces: tile, concrete, aluminum, cloth, and two different car paints (black and silver). While these spectra contained features in the same spectral range as those for TNT, we do not observe any spectra similar to that of TNT.

More Details

Complex Adaptive System of Systems (CASoS) Engineering Applications (V.1.0)

Brown, Theresa J.; Glass Jr., Robert J.; Beyeler, Walter E.; Ames, Arlo; Linebarger, John

Complex Adaptive Systems of Systems, or CASoS, are vastly complex eco-socio-economic-technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to highly-saturated interdependencies and allied vulnerabilities to cascades in associated systems. The Phoenix initiative approaches this high-impact problem space as engineers, devising interventions (problem solutions) that influence CASoS to achieve specific aspirations. CASoS embody the world's biggest problems and greatest opportunities: applications to real world problems are the driving force of our effort. We are developing engineering theory and practice together to create a discipline that is grounded in reality, extends our understanding of how CASoS behave, and allows us to better control those behaviors. Through application to real-world problems, Phoenix is evolving CASoS Engineering principles while growing a community of practice and the CASoS engineers to populate it.

More Details

A non-local, ordinary-state-based viscoelasticity model for peridynamics

Mitchell, John A.

A non-local, ordinary-state-based, peridynamics viscoelasticity model is developed. In this model, viscous effects are added to deviatoric deformations and the bulk response remains elastic. The model uses internal state variables and is conceptually similar to linearized isotropic viscolelasticity in the local theory. The modulus state, which is used to form the Jacobian matrix in Newton-Raphson algorithms, is presented. The model is shown to satisfy the 2nd law of thermodynamics and is applicable to problems in solid continuum mechanics where fracture and rate effects are important; it inherits all the advantages for modeling fracture associated with peridynamics. By combining this work with the previously published ordinary-state-based plasticity model, the model may be amenable to viscoplasticity problems where plasticity and rate effects are simultaneously important. Also, the model may be extended to include viscous effects for spherical deformations as well. The later two extensions are not presented and may be the subject of further work.

More Details

Nanomanufacturing: Nano-Structured Materials Made Layer-by-Layer

Schunk, Peter R.; Grest, Gary S.; Chandross, Michael E.; Reedy, Earl D.; Cox, James; Fan, Hongyou; Roberts, Scott A.

Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $\$$1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

More Details

Comparison of binary collision approximation and molecular dynamics for displacement cascades in GaAs

Foiles, Stephen M.

The predictions of binary collision approximation (BCA) and molecular dynamics (MD) simulations of displacement cascades in GaAs are compared. There are three issues addressed in this work. The first is the optimal choice of the effective displacement threshold to use in the BCA calculations to obtain the best agreement with MD results. Second, the spatial correlations of point defects are compared. This is related to the level of clustering that occurs for different types of radiation. Finally, the size and structure of amorphous zones seen in the MD simulations is summarized. BCA simulations are not able to predict the formation of amorphous material.

More Details

Nanoparticle modifications of photodefined nanostructures for energy applications

Burckel, David B.; Wheeler, David R.; Washburn, Cody; Brozik, Susan M.

The advancement of materials technology towards the development of novel 3D nanostructures for energy applications has been a long-standing challenge. The purpose of this project was to explore photolithographically defineable pyrolyzed photoresist carbon films for possible energy applications. The key attributes that we explored were as follows: (1) Photo-interferometric fabrication methods to produce highly porous (meso, micro, and nano) 3-D electrode structures, and (2) conducting polymer and nanoparticle-modification strategies on these structures to provide enhanced catalytic capabilities and increase conductivity. The resulting electrodes were then explored for specific applications towards possible use in battery and energy platforms.

More Details
Results 66801–67000 of 99,299
Results 66801–67000 of 99,299