Publications

12 Results
Skip to search filters

Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

Schwarz, Haiqing L.

We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

More Details

Nanoporous-carbon as a potential host material for reversible Mg ion intercalation

Journal of the Electrochemical Society

Siegal, Michael P.; Yelton, W.G.; Perdue, Brian R.; Sava Gallis, Dorina F.; Schwarz, Haiqing L.

We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignardbased electrolyte. NPC mass density is controlled during growth, ranging from 0.06-1.3 g/cm3. The specific surface area of NPC increases linearly from 1,000 to 1,700 m2/g as mass density decreases from 1.3 to 0.26 g/cm3, however, the surface area falls off dramatically at lowermass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density ∼0.5 g/cm3 and BET surface area ∼1500 m2/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials.

More Details

Functionalized ultra-porous titania nanofiber membranes as nuclear waste separation and sequestration scaffolds for nuclear fuels recycle

Schwarz, Haiqing L.

Advanced nuclear fuel cycle concept is interested in reducing separations to a simplified, one-step process if possible. This will benefit from the development of a one-step universal getter and sequestration material so as a simplified, universal waste form was proposed in this project. We have developed a technique combining a modified sol-gel chemistry and electrospinning for producing ultra-porous ceramic nanofiber membranes with controllable diameters and porous structures as the separation/sequestration materials. These ceramic nanofiber materials have been determined to have high porosity, permeability, loading capacity, and stability in extreme conditions. These porous fiber membranes were functionalized with silver nanoparticles and nanocrystal metal organic frameworks (MOFs) to introduce specific sites to capture gas species that are released during spent nuclear fuel reprocessing. Encapsulation into a durable waste form of ceramic composition was also demonstrated.

More Details
12 Results
12 Results