Metal Powder Feedstock Reuse in Additive Manufacturing: Characterization of 316L Stainless Steel
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Research
The powder-bed laser additive manufacturing (AM) process is widely used in the fabrication of three-dimensional metallic parts with intricate structures, where kinetically controlled diffusion and microstructure ripening can be hindered by fast melting and rapid solidification. Therefore, the microstructure and physical properties of parts made by this process will be significantly different from their counterparts produced by conventional methods. This work investigates the microstructure evolution for an AM fabricated AlSi10Mg part from its nonequilibrium state toward equilibrium state. Special attention is placed on silicon dissolution, precipitate formation, collapsing of a divorced eutectic cellular structure, and microstructure ripening in the thermal annealing process. These events alter the size, morphology, length scale, and distribution of the beta silicon phase in the primary aluminum, and changes associated with elastic properties and microhardness are reported. The relationship between residual stress and silicon dissolution due to changes in lattice spacing is also investigated and discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Journal of Selected Topics in Quantum Electronics
The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Engineering Materials
Additive manufacturing enables the rapid, cost effective production of customized structural components. To fully capitalize on the agility of additive manufacturing, it is necessary to develop complementary high-throughput materials evaluation techniques. In this study, over 1000 nominally identical tensile tests are used to explore the effect of process variability on the mechanical property distributions of a precipitation hardened stainless steel produced by a laser powder bed fusion process, also known as direct metal laser sintering or selective laser melting. With this large dataset, rare defects are revealed that affect only ≈2% of the population, stemming from a single build lot of material. The rare defects cause a substantial loss in ductility and are associated with an interconnected network of porosity. The adoption of streamlined test methods will be paramount to diagnosing and mitigating such dangerous anomalies in future structural components.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Scripta Materialia
Additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Processing Technology
An adage within the Additive Manufacturing (AM) community is that “complexity is free”. Complicated geometric features that normally drive manufacturing cost and limit design options are not typically problematic in AM. While geometric complexity is usually viewed from the perspective of part design, this advantage of AM also opens up new options in rapid, efficient material property evaluation and qualification. In the current work, an array of 100 miniature tensile bars are produced and tested for a comparable cost and in comparable time to a few conventional tensile bars. With this technique, it is possible to evaluate the stochastic nature of mechanical behavior. The current study focuses on stochastic yield strength, ultimate strength, and ductility as measured by strain at failure (elongation). However, this method can be used to capture the statistical nature of many mechanical properties including the full stress-strain constitutive response, elastic modulus, work hardening, and fracture toughness. Moreover, the technique could extend to strain-rate and temperature dependent behavior. As a proof of concept, the technique is demonstrated on a precipitation hardened stainless steel alloy, commonly known as 17-4PH, produced by two commercial AM vendors using a laser powder bed fusion process, also commonly known as selective laser melting. Using two different commercial powder bed platforms, the vendors produced material that exhibited slightly lower strength and markedly lower ductility compared to wrought sheet. Moreover, the properties were much less repeatable in the AM materials as analyzed in the context of a Weibull distribution, and the properties did not consistently meet minimum allowable requirements for the alloy as established by AMS. The diminished, stochastic properties were examined in the context of major contributing factors such as surface roughness and internal lack-of-fusion porosity. This high-throughput capability is expected to be useful for follow-on extensive parametric studies of factors that affect the statistical reliability of AM components.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A unique, micro-scale architecture is proposed to create a novel hybrid concentrated photovoltaic system. Micro-scale (sub-millimeter wide), multi-junction cells are attached to a large-area silicon cell backplane (several inches wide) that can optimally collect both direct and diffuse light. By using multi- junction III-V cells, we can get the highest possible efficiency of the direct light input. In addition, by collecting the diffuse light in the large-area silicon cell, we can produce power on cloudy days when the concentrating cells would have minimal output. Through the use of micro-scale cells and lenses, the overall assembly will provide higher efficiency than conventional concentrators and flat plates, while keeping the form factor of a flat plate module. This report describes the hybrid concept, the design of a prototype, including the PV cells and optics, and the experimental results.
Abstract not provided.
Abstract not provided.
No industry-wide standards yet exist for minimum properties in additively manufactured (AM) metals. While AM alloys such as 17-4 precipitation hardened stainless steel have been shown to have average properties that can be comparable to wrought or cast product, they suffer from inconsistent performance. Variability in the feedstock powder, feature sizes, thermal history, and laser performance can lead to unpredictable surface finish, chemistry, phase content, and defects. To address this issue, rapid, efficient, high-throughput mechanical testing and data analysis was developed, providing profound statistical insight into the stochastic variability in properties. With this new approach, 1000’s of comprehensive tensile tests can be performed for the cost of 10’s of conventional tests. This new high-throughput approach provides a material qualification pathway that is commensurate with the quick turn-around benefit of AM.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - ASPE 2016 Annual Meeting
Abstract not provided.
Proceedings - 32nd ASPE Annual Meeting
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - ASPE 2015 Spring Topical Meeting: Achieving Precision Tolerances in Additive Manufacturing
Abstract not provided.
Abstract not provided.
2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014
Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Optics Express
Abstract not provided.
Optics Express
Abstract not provided.
Proceedings - ASPE 2014 Annual Meeting
Abstract not provided.
Proceedings of the 28th Annual Meeting of the American Society for Precision Engineering, ASPE 2013
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Sandia has developed an optical design for wearable binoculars utilizing freeform surfaces and switchable mirrors. The goals of the effort included a design lightweight enough to be worn by the user while providing a useful field of view and magnification as well as non-mechanical switching between normal and zoomed vision. Sandia's approach is a four mirror, off-axis system taking advantage of the weight savings and chromatic performance of a reflective system. The system incorporates an electrochromic mirror on the final surface before the eye allowing the user to switch between viewing modes. Results from a prototype of a monocular version with 6.6x magnification will be presented. The individual mirrors, including three off-axis aspheres and one true freeform, were fabricated using a diamond-turning based process. A slow-slide servo process was used for the freeform element. Surface roughness and form measurement of the freeform mirror will be presented as well as the expected impact on performance. The alignment and assembly procedure will be reviewed as well as the measured optical performance of the prototype. In parallel to the optical design work, development of an electrochromic mirror has provided a working device with faster switching than current state of the art. Switchable absorbers have been demonstrated with switching times less than 0.5 seconds. The deposition process and characterization of these devices will be presented. Finally, details of an updated optical design with additional freeform surfaces will be presented as well as plans for integrating the electrochromic mirror into the system. © 2013 SPIE.
Abstract not provided.
Abstract not provided.
Abstract not provided.